Suppr超能文献

光驱动的光遗传学时钟同步。

Light-driven synchronization of optogenetic clocks.

机构信息

Department of Physics, Sapienza University of Rome, Roma, Italy.

Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.

出版信息

Elife. 2024 Oct 15;13:RP97754. doi: 10.7554/eLife.97754.

Abstract

Synthetic genetic oscillators can serve as internal clocks within engineered cells to program periodic expression. However, cell-to-cell variability introduces a dispersion in the characteristics of these clocks that drives the population to complete desynchronization. Here, we introduce the optorepressilator, an optically controllable genetic clock that combines the repressilator, a three-node synthetic network in , with an optogenetic module enabling to reset, delay, or advance its phase using optical inputs. We demonstrate that a population of optorepressilators can be synchronized by transient green light exposure or entrained to oscillate indefinitely by a train of short pulses, through a mechanism reminiscent of natural circadian clocks. Furthermore, we investigate the system's response to detuned external stimuli observing multiple regimes of global synchronization. Integrating experiments and mathematical modeling, we show that the entrainment mechanism is robust and can be understood quantitatively from single cell to population level.

摘要

合成遗传振荡器可以作为工程细胞内的内部时钟,以编程周期性表达。然而,细胞间的可变性会导致这些时钟的特征出现分散,从而导致群体完全失步。在这里,我们引入了光控振荡器,这是一种光控遗传时钟,它将三节点合成网络与光遗传学模块相结合,从而可以使用光学输入来重置、延迟或提前其相位。我们证明,通过短暂的绿光照射,光控振荡器种群可以被同步,或者通过短脉冲序列的训练使其无限期地振荡,这一机制类似于自然生物钟。此外,我们研究了系统对外界调谐刺激的响应,观察到全局同步的多个状态。通过实验和数学建模的整合,我们表明,该同步机制具有鲁棒性,可以从单细胞到群体水平进行定量理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c44c/11479589/3208624299d7/elife-97754-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验