Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
ACS Nano. 2024 Sep 10;18(36):25018-25035. doi: 10.1021/acsnano.4c06295. Epub 2024 Aug 24.
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors (AMPARs) enable rapid excitatory synaptic transmission by localizing to the postsynaptic density of glutamatergic spines. AMPARs possess large extracellular N-terminal domains (NTDs), which are crucial for AMPAR clustering at synaptic sites. However, the dynamics of NTDs and the molecular mechanism governing their synaptic clustering remain elusive. Here, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the conformational dynamics of NTDs in the GluA2 subunit complexed with TARP γ2 in lipid environments. HS-AFM videos of GluA2-γ2 in the resting and activated/open states revealed fluctuations in NTD dimers. Conversely, in the desensitized/closed state, the two NTD dimers adopted a separated conformation with less fluctuation. Notably, we observed individual NTD dimers transitioning into monomers, with extended monomeric states in the activated/open state. Molecular dynamics simulations provided further support, confirming the energetic stability of the monomeric NTD states within lipids. This NTD-dimer splitting resulted in subunit exchange between the receptors and increased the number of interaction sites with synaptic protein neuronal pentraxin 1 (NP1). Moreover, our HS-AFM studies revealed that NP1 forms a ring-shaped octamer through N-terminal disulfide bonds and binds to the tip of the NTD. These findings suggest a molecular mechanism in which NP1, upon forming an octamer, is secreted into the synaptic region and binds to the tip of the GluA2 NTD, thereby bridging and clustering multiple AMPARs. Thus, our findings illuminate the critical role of NTD dynamics in the synaptic clustering of AMPARs and contribute valuable insights into the fundamental processes of synaptic transmission.
α-氨基-3-羟基-5-甲基-4-异恶唑丙酸谷氨酸受体 (AMPARs) 通过定位于谷氨酸能棘突的突触后密度来实现快速兴奋性突触传递。AMPAR 具有大的细胞外 N 端结构域 (NTD),对于 AMPAR 在突触部位的聚集至关重要。然而,NTD 的动力学及其调节突触聚集的分子机制仍不清楚。在这里,我们采用高速原子力显微镜 (HS-AFM) 直接观察在脂质环境中与 TARP γ2 结合的 GluA2 亚基复合物中 NTD 的构象动力学。在静息和激活/开放状态下的 GluA2-γ2 的 HS-AFM 视频显示 NTD 二聚体的波动。相反,在脱敏/关闭状态下,两个 NTD 二聚体采用分离构象,波动较小。值得注意的是,我们观察到单个 NTD 二聚体转变为单体,在激活/开放状态下具有扩展的单体状态。分子动力学模拟提供了进一步的支持,证实了单体 NTD 状态在脂质中的能量稳定性。这种 NTD 二聚体分裂导致受体之间的亚基交换,并增加了与突触蛋白神经元五聚体 1 (NP1) 的相互作用位点数量。此外,我们的 HS-AFM 研究表明,NP1 通过 N 端二硫键形成环形八聚体,并结合到 NTD 的尖端。这些发现表明了一种分子机制,即 NP1 在形成八聚体后被分泌到突触区域,并与 GluA2 NTD 的尖端结合,从而桥接和聚集多个 AMPAR。因此,我们的发现阐明了 NTD 动力学在 AMPAR 突触聚集中的关键作用,并为突触传递的基本过程提供了有价值的见解。