Hisama Kaoru, Valadez Huerta Gerardo, Koyama Michihisa
Research Initiative for Supra-Materials, Shinshu University, Nagano, Japan.
J Comput Chem. 2024 Dec 15;45(32):2805-2811. doi: 10.1002/jcc.27487. Epub 2024 Aug 23.
Computational understanding of the liquid-electrode interface faces challenges in efficiently incorporating reactive force fields and electrostatic potentials within reasonable computational costs. Although universal neural network potentials (UNNPs), representing pretrained machine learning interatomic potentials, are emerging, current UNNP models lack explicit treatment of Coulomb potentials, and methods for integrating additional charges on the electrode remain to be established. We propose a method to analyze liquid-electrode interfaces by integrating a UNNP, known as the preferred potential, with Coulomb potentials using the ONIOM method. This approach extends the applicability of UNNPs to electrode-liquid interface systems. Through molecular dynamics simulations of graphene-water and graphene oxide (GO)-water interfaces, we demonstrate the effectiveness of our method. Our findings emphasize the necessity of incorporating long-range Coulomb potentials into the water potential to accurately describe water polarization at the interface. Furthermore, we observe that functional groups on the GO electrode influence both polarization and capacitance.
对液-电极界面的计算理解面临着挑战,即在合理的计算成本内有效地纳入反应力场和静电势。尽管表示预训练机器学习原子间势的通用神经网络势(UNNPs)正在兴起,但目前的UNNP模型缺乏对库仑势的明确处理,并且在电极上整合额外电荷的方法仍有待建立。我们提出了一种方法,通过使用ONIOM方法将一种称为首选势的UNNP与库仑势相结合来分析液-电极界面。这种方法将UNNPs的适用性扩展到电极-液体界面系统。通过对石墨烯-水和氧化石墨烯(GO)-水界面的分子动力学模拟,我们证明了我们方法的有效性。我们的研究结果强调了将长程库仑势纳入水势以准确描述界面处水极化的必要性。此外,我们观察到GO电极上的官能团会影响极化和电容。