Suppr超能文献

PiNN:用于模拟电化学系统的等变神经网络套件。

PiNN: Equivariant Neural Network Suite for Modeling Electrochemical Systems.

作者信息

Li Jichen, Knijff Lisanne, Zhang Zhan-Yun, Andersson Linnéa, Zhang Chao

机构信息

Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden.

Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121 Uppsala, Sweden.

出版信息

J Chem Theory Comput. 2025 Feb 11;21(3):1382-1395. doi: 10.1021/acs.jctc.4c01570. Epub 2025 Jan 30.

Abstract

Electrochemical energy storage and conversion play increasingly important roles in electrification and sustainable development across the globe. A key challenge therein is to understand, control, and design electrochemical energy materials with atomistic precision. This requires inputs from molecular modeling powered by machine learning (ML) techniques. In this work, we have upgraded our pairwise interaction neural network Python package PiNN via introducing equivariant features to the PiNet2 architecture for fitting potential energy surfaces along with PiNet2-dipole for dipole and charge predictions as well as PiNet2-χ for generating atom-condensed charge response kernels. By benchmarking publicly accessible data sets of small molecules, crystalline materials, and liquid electrolytes, we found that the equivariant PiNet2 shows significant improvements over the original PiNet architecture and provides a state-of-the-art overall performance. Furthermore, leveraging on plug-ins such as PiNNAcLe for an adaptive learn-on-the-fly workflow in generating ML potentials and PiNNwall for modeling heterogeneous electrodes under external bias, we expect PiNN to serve as a versatile and high-performing ML-accelerated platform for molecular modeling of electrochemical systems.

摘要

电化学储能与转换在全球电气化和可持续发展中发挥着越来越重要的作用。其中一个关键挑战是要以原子精度理解、控制和设计电化学能源材料。这需要机器学习(ML)技术驱动的分子建模提供支持。在这项工作中,我们通过在PiNet2架构中引入等变特征来升级我们的成对相互作用神经网络Python包PiNN,以拟合势能面,同时引入PiNet2 - 偶极用于偶极和电荷预测,以及PiNet2 - χ用于生成原子凝聚电荷响应核。通过对小分子、晶体材料和液体电解质的公开数据集进行基准测试,我们发现等变PiNet2相对于原始PiNet架构有显著改进,并提供了一流的整体性能。此外,利用诸如PiNNAcLe等插件来实现生成机器学习势能时的自适应即时学习工作流程,以及利用PiNNwall来模拟外部偏压下的异质电极,我们期望PiNN能成为一个通用且高性能的机器学习加速平台,用于电化学系统的分子建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b6/11823406/29942215f74f/ct4c01570_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验