Suppr超能文献

将成人神经发生和人类脑类器官模型相结合,以推进癫痫和相关行为研究。

Integrating adult neurogenesis and human brain organoid models to advance epilepsy and associated behavioral research.

机构信息

Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA.

Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA.

出版信息

Epilepsy Behav. 2024 Oct;159:109982. doi: 10.1016/j.yebeh.2024.109982. Epub 2024 Aug 24.

Abstract

Epilepsy is a chronic neurological disorder characterized by recurring, unprovoked seizures, asymmetrical electroencephalogram patterns, and other pathological abnormalities. The hippocampus plays a pivotal role in learning, memory consolidation, attentional control, and pattern separation. Impairment of hippocampal network circuitry can induce long-term cognitive and memory dysfunction. In this review, we discuss how aberrant adult neurogenesis and plasticity collectively alter the network balance for information processing within the hippocampal neural network. Subsequently, we explore the potential of human brain organoids integrated into microelectrode array technology as an electrophysiological tool. We also discuss the utilization of a closed-loop platform that connects the brain organoid to a mobile robot in a virtual environment. While in vivo models provide valuable insights into some aspects of epileptogenesis, such as the impact of adult neurogenesis on hippocampal function, brain organoids are indispensable for comprehensively studying epileptogenesis involving genetic mutations that underlie human epilepsy. More importantly, a combinational approach using brain organoids on MEA paves the way for studying impaired plasticity and abnormal information processing within epileptic neural networks. This innovative in vitro approach may provide a new pathway for investigating the behavioral outcomes of aberrant neural networks when integrated with a mobile robot, closing the loop between the neural network in brain organoids and the mobile robot. In this review, we aim to discuss the use of each model to study the behavioral changes in epilepsy and highlight the benefits of both in vivo and in vitro models for understanding the behavioral aspects of epilepsy.

摘要

癫痫是一种慢性神经系统疾病,其特征是反复发作、无诱因的癫痫发作、脑电图模式不对称和其他病理异常。海马体在学习、记忆巩固、注意力控制和模式分离中起着关键作用。海马网络电路的损伤会导致长期认知和记忆功能障碍。在这篇综述中,我们讨论了异常的成年神经发生和可塑性如何共同改变海马神经网络内信息处理的网络平衡。随后,我们探讨了将人脑类器官整合到微电极阵列技术中的潜力,作为一种电生理工具。我们还讨论了将脑类器官与虚拟环境中的移动机器人连接的闭环平台的利用。虽然体内模型为癫痫发生的某些方面提供了有价值的见解,例如成年神经发生对海马功能的影响,但脑类器官对于全面研究涉及人类癫痫遗传突变的癫痫发生是不可或缺的。更重要的是,使用脑类器官在 MEAs 上的组合方法为研究癫痫神经网络内的受损可塑性和异常信息处理铺平了道路。这种创新的体外方法可能为研究与移动机器人集成时异常神经网络的行为结果提供新途径,在脑类器官中的神经网络和移动机器人之间形成闭环。在这篇综述中,我们旨在讨论使用每种模型来研究癫痫中的行为变化,并强调体内和体外模型在理解癫痫行为方面的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验