Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Neuron. 2024 Oct 23;112(20):3434-3451.e11. doi: 10.1016/j.neuron.2024.07.025. Epub 2024 Aug 23.
Expansion of an intronic (GGGGCC)n repeat within the C9ORF72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (C9-FTD/ALS), characterized with aberrant repeat RNA foci and noncanonical translation-produced dipeptide repeat (DPR) protein inclusions. Here, we elucidate that the (GGGGCC)n repeat RNA co-localizes with nuclear speckles and alters their phase separation properties and granule dynamics. Moreover, the essential nuclear speckle scaffold protein SRRM2 is sequestered into the poly-GR cytoplasmic inclusions in the C9-FTD/ALS mouse model and patient postmortem tissues, exacerbating the nuclear speckle dysfunction. Impaired nuclear speckle integrity induces global exon skipping and intron retention in human iPSC-derived neurons and causes neuronal toxicity. Similar alternative splicing changes can be found in C9-FTD/ALS patient postmortem tissues. This work identified novel molecular mechanisms of global RNA splicing defects caused by impaired nuclear speckle function in C9-FTD/ALS and revealed novel potential biomarkers or therapeutic targets.
C9ORF72 基因中内含子(GGGGCC)n 重复的扩张是额颞叶痴呆(FTD)和肌萎缩侧索硬化症(ALS)(C9-FTD/ALS)的最常见遗传原因,其特征是异常重复 RNA 焦点和非典型翻译产生的二肽重复(DPR)蛋白包涵体。在这里,我们阐明了(GGGGCC)n 重复 RNA 与核斑点共定位,并改变了它们的相分离特性和颗粒动力学。此外,核斑点必需的支架蛋白 SRRM2 被隔离到 C9-FTD/ALS 小鼠模型和患者死后组织中的聚-GR 细胞质包涵体中,从而加剧了核斑点功能障碍。核斑点完整性受损导致人类 iPSC 衍生神经元中的全局外显子跳跃和内含子保留,并引起神经元毒性。在 C9-FTD/ALS 患者死后组织中也可以发现类似的选择性剪接变化。这项工作确定了 C9-FTD/ALS 中核斑点功能障碍引起的全局 RNA 剪接缺陷的新分子机制,并揭示了新的潜在生物标志物或治疗靶点。