Suppr超能文献

将工业排放物与饮食暴露联系起来,以评估多氯萘对人体的负担。

Linking industrial emissions and dietary exposure to human burdens of polychlorinated naphthalenes.

机构信息

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.

出版信息

Sci Total Environ. 2024 Nov 15;951:175733. doi: 10.1016/j.scitotenv.2024.175733. Epub 2024 Aug 23.

Abstract

Relationships between toxic pollutant emissions during industrial processes and toxic pollutant dietary intakes and adverse health burdens have not yet been quantitatively clarified. Polychlorinated naphthalenes (PCNs) are typical industrial pollutants that are carcinogenic and of increasing concern. In this study, we established an interpretable machine learning model for quantifying the contributions of industrial emissions and dietary intakes of PCNs to health effects. We used the SHapley Additive exPlanations model to achieve individualized interpretability, enabling us to evaluate the specific contributions of individual feature values towards PCNs concentration levels. A strong relationship between PCN dietary intake and body burden was found using a robust large-scale PCN diet survey database for China containing the results of the analyses of 17,280 dietary samples and 4480 breast milk samples. Industrial emissions and dietary intake contributed 12 % and 52 %, respectively, of the PCN burden in breast milk. The model quantified the contributions of food consumption and industrial emissions to PCN exposure, which will be useful for performing accurate health risk assessments and developing reduction strategies of PCNs.

摘要

工业过程中有毒污染物排放与有毒污染物膳食摄入和不良健康负担之间的关系尚未得到定量阐明。多氯萘(PCNs)是一种典型的工业污染物,具有致癌性,越来越受到关注。在这项研究中,我们建立了一个可解释的机器学习模型,用于量化 PCN 排放对健康影响的贡献以及膳食摄入。我们使用 Shapley 加法解释模型实现了个性化的可解释性,使我们能够评估单个特征值对 PCN 浓度水平的具体贡献。我们使用一个强大的大规模 PCN 饮食调查数据库,该数据库包含了对 17280 个饮食样本和 4480 个母乳样本的分析结果,发现 PCN 膳食摄入量与体内负荷之间存在很强的关系。工业排放和膳食摄入分别占母乳中 PCN 负担的 12%和 52%。该模型量化了食物消费和工业排放对 PCN 暴露的贡献,这将有助于进行准确的健康风险评估和制定减少 PCN 的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验