Suppr超能文献

通过靶向突变 V 形亚基提高 l-苏氨酸醛缩酶的热稳定性和活性。

Thermostability and activity improvement in l-threonine aldolase through targeted mutations in V-shaped subunit.

机构信息

Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

出版信息

Int J Biol Macromol. 2024 Oct;278(Pt 4):134994. doi: 10.1016/j.ijbiomac.2024.134994. Epub 2024 Aug 22.

Abstract

l-threonine aldolase (LTA) catalyzes the synthesis of β-hydroxy-α-amino acids, which are important chiral intermediates widely used in the fields of pharmaceuticals and pesticides. However, the limited thermostability of LTA hinders its industrial application. Furthermore, the trade-off between thermostability and activity presents a challenge in the thermostability engineering of this enzyme. This study proposes a strategy to regulate the rigidity of LTA's V-shaped subunit by modifying its opening and hinge regions, distant from the active center, aiming to mitigate the trade-off. With LTA from Bacillus nealsonii as targeted enzyme, a total of 25 residues in these two regions were investigated by directed evolution. Finally, mutant G85A/M207L/A12C was obtained, showing significantly enhanced thermostability with a 20 °C increase in T to 66 °C, and specific activity elevated by 34 % at the optimum temperature. Molecular dynamics simulations showed that the newly formed hydrophobicity and hydrogen bonds improved the thermostability and boosted proton transfer efficiency. This work enhances the thermostability of LTA while preventing the loss of activity. It opens new avenues for the thermostability engineering of other industrially relevant enzymes with active center located at the interface of subunits or domains.

摘要

苏氨酸醛缩酶(LTA)催化β-羟基-α-氨基酸的合成,这些氨基酸是药物和农药领域中广泛应用的重要手性中间体。然而,LTA 的有限热稳定性限制了其工业应用。此外,在该酶的热稳定性工程中,热稳定性和活性之间的权衡是一个挑战。本研究提出了一种通过修饰远离活性中心的 V 形亚基的开口和铰链区域来调节 LTA 刚性的策略,旨在减轻这种权衡。以 Bacillus nealsonii 的 LTA 为靶标酶,通过定向进化研究了这两个区域的总共 25 个残基。最终获得了突变体 G85A/M207L/A12C,其热稳定性显著提高,T 提高了 20°C,达到 66°C,最适温度下的比活性提高了 34%。分子动力学模拟表明,新形成的疏水性和氢键提高了热稳定性并促进了质子转移效率。这项工作提高了 LTA 的热稳定性,同时防止了活性的丧失。它为其他具有活性中心位于亚基或结构域界面的工业相关酶的热稳定性工程开辟了新的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验