Department of Statistics, Florida State University, 117 N. Woodward Ave., Tallahassee, FL, USA.
Spat Spatiotemporal Epidemiol. 2024 Aug;50:100661. doi: 10.1016/j.sste.2024.100661. Epub 2024 Jul 10.
Public health spatial data are often recorded at different spatial scales (or geographic regions/divisions) and over different correlated variables. Motivated by data from the Dartmouth Atlas Project, we consider jointly analyzing average annual percentages of diabetic Medicare enrollees who have taken the hemoglobin A1c and blood lipid tests, observed at the hospital service area (HSA) and county levels, respectively. Capitalizing on bivariate relationships between these two scales is not immediate as counties are not nested within HSAs. It is well known that one can improve predictions by leveraging correlations across both variables and scales. There are very few methods available that simultaneously model multivariate and multiscale correlations. We propose three new hierarchical Bayesian models for bivariate multiscale spatial data, extending spatial random effects, multivariate conditional autoregressive (MCAR), and ordered hierarchical models through a multiscale spatial approach. We simulated data from each of the three models and compared the corresponding predictions, and found the computationally intensive multiscale MCAR model is more robust to model misspecification. In an analysis of 2015 Texas Dartmouth Atlas Project data, we produced finer resolution predictions (partitioning of HSAs and counties) than univariate analyses, determined that the novel multiscale MCAR and OH models were preferable via out-of-sample metrics, and determined the HSA with the highest within-HSA variability of hemoglobin A1c blood testing. Additionally, we compare the univariate multiscale models to the bivariate multiscale models and see clear improvements in prediction over univariate analyses.
公共卫生空间数据通常记录在不同的空间尺度(或地理区域/分区)和不同的相关变量上。受达特茅斯地图集项目数据的启发,我们考虑联合分析在医院服务区(HSA)和县级分别观察到的糖尿病医疗保险参保者接受血红蛋白 A1c 和血脂测试的平均年度百分比。由于县不嵌套在 HSA 中,因此不能立即利用这两个尺度之间的双变量关系。众所周知,可以通过利用两个变量和尺度之间的相关性来提高预测能力。几乎没有同时对多变量和多尺度相关性进行建模的方法。我们提出了三种新的双变量多尺度空间数据的层次贝叶斯模型,通过多尺度空间方法扩展了空间随机效应、多变量条件自回归(MCAR)和有序层次模型。我们从每个模型中模拟数据,并比较了相应的预测,发现计算密集型的多尺度 MCAR 模型对模型误设更稳健。在对 2015 年德克萨斯州达特茅斯地图集项目数据的分析中,我们生成了比单变量分析更精细的分辨率预测(HSA 和县的分区),通过样本外指标确定新颖的多尺度 MCAR 和 OH 模型更可取,并确定了 HSA 内血红蛋白 A1c 血液测试的内 HSA 变异性最高。此外,我们将单变量多尺度模型与双变量多尺度模型进行比较,并发现预测结果明显优于单变量分析。