Suppr超能文献

精准优化增材制造多孔钽支架的孔隙结构以促进骨再生:概念验证研究。

Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: A proof-of-concept study.

机构信息

Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China.

出版信息

Biomaterials. 2025 Feb;313:122756. doi: 10.1016/j.biomaterials.2024.122756. Epub 2024 Aug 15.

Abstract

Currently, the treatment of bone defects in arthroplasty is a challenge in clinical practice. Nonetheless, commercially available orthopaedic scaffolds have shown limited therapeutic effects for large bone defects, especially for massiveand irregular defects. Additively manufactured porous tantalum, in particular, has emerged as a promising material for such scaffolds and is widely used in orthopaedics for its exceptional biocompatibility, osteoinduction, and mechanical properties. Porous tantalum has also exhibited unique advantages in personalised rapid manufacturing, which allows for the creation of customised scaffolds with complex geometric shapes for clinical applications at a low cost and high efficiency. However, studies on the effect of the pore structure of additively manufactured porous tantalum on bone regeneration have been rare. In this study, our group designed and fabricated a batch of precision porous tantalum scaffolds via laser powder bed fusion (LPBF) with pore sizes of 250 μm (Ta 250), 450 μm (Ta 450), 650 μm (Ta 650), and 850 μm (Ta 850). We then performed a series of in vitro experiments and observed that all four groups showed good biocompatibility. In particular, Ta 450 demonstrated the best osteogenic performance. Afterwards, our team used a rat bone defect model to determine the in vivo osteogenic effects. Based on micro-computed tomography and histology, we identified that Ta 450 exhibited the best bone ingrowth performance. Subsequently, sheep femur and hip defect models were used to further confirm the osteogenic effects of Ta 450 scaffolds. Finally, we verified the aforementioned in vitro and in vivo results via clinical application (seven patients waiting for revision total hip arthroplasty) of the Ta 450 scaffold. The clinical results confirmed that Ta 450 had satisfactory clinical outcomes up to the 12-month follow-up. In summary, our findings indicate that 450 μm is the suitable pore size for porous tantalum scaffolds. This study may provide a new therapeutic strategy for the treatment of massive, irreparable, and protracted bone defects in arthroplasty.

摘要

目前,关节置换术中的骨缺损治疗是临床实践中的一个挑战。尽管如此,市售的骨科支架在治疗大骨缺损方面的疗效有限,特别是对于大的和不规则的骨缺损。增材制造的多孔钽尤其成为了此类支架的一种有前途的材料,并因其出色的生物相容性、成骨诱导性和机械性能而在骨科中得到广泛应用。多孔钽在个性化快速制造方面也表现出独特的优势,允许以低成本和高效率为临床应用创建具有复杂几何形状的定制支架。然而,关于增材制造的多孔钽的孔隙结构对骨再生的影响的研究还很少。在本研究中,我们小组通过激光粉末床融合 (LPBF) 设计并制造了一批具有 250μm(Ta250)、450μm(Ta450)、650μm(Ta650)和 850μm(Ta850)孔径的精密多孔钽支架。随后,我们进行了一系列体外实验,观察到所有四组均表现出良好的生物相容性。特别是 Ta450 表现出最佳的成骨性能。之后,我们的团队使用大鼠骨缺损模型来确定体内成骨效果。基于微计算机断层扫描和组织学分析,我们确定 Ta450 具有最佳的骨向内生长性能。随后,使用绵羊股骨和髋关节缺损模型进一步证实了 Ta450 支架的成骨效果。最后,我们通过 Ta450 支架的临床应用(七名等待翻修全髋关节置换术的患者)验证了上述体外和体内结果。临床结果证实,Ta450 在 12 个月的随访中具有令人满意的临床结果。综上所述,我们的研究结果表明 450μm 是多孔钽支架的合适孔径。本研究可能为关节置换术中大、不可修复和迁延性骨缺损的治疗提供新的治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验