Suppr超能文献

一种用于长期 COVID-19 实时监测的智能服装。

An intelligent garment for long COVID-19 real-time monitoring.

机构信息

Univ. Lille, ENSAIT, Laboratoire Génie et Matériaux Textile (GEMTEX), F-59000, Lille, France; Univ. Lille, Ecole Centrale Lille, F-59000, Lille, France.

Univ. Lille, ENSAIT, Laboratoire Génie et Matériaux Textile (GEMTEX), F-59000, Lille, France.

出版信息

Comput Biol Med. 2024 Oct;181:109067. doi: 10.1016/j.compbiomed.2024.109067. Epub 2024 Aug 24.

Abstract

As monitoring and diagnostic tools for long COVID-19 cases, wearable systems and supervised learning-based medical image analysis have proven to be useful. Current research on these two technical roadmaps has various drawbacks, despite their respective benefits. Wearable systems allow only the real-time monitoring of physiological parameters (heart rate, temperature, blood oxygen saturation, or SpO). Therefore, they are unable to conduct in-depth investigations or differentiate COVID-19 from other illnesses that share similar symptoms. Medical image analysis using supervised learning-based models can be used to conduct in-depth analyses and provide precise diagnostic decision support. However, these methods are rarely used for real-time monitoring. In this regard, we present an intelligent garment combining the precision of supervised learning-based models with real-time monitoring capabilities of wearable systems. Given the relevance of electrocardiogram (ECG) signals to long COVID-19 symptom severity, an explainable data fusion strategy based on multiple machine learning models uses heart rate, temperature, SpO, and ECG signal analysis to accurately assess the patient's health status. Experiments show that the proposed intelligent garment achieves an accuracy of 97.5 %, outperforming most of the existing wearable systems. Furthermore, it was confirmed that the two physiological indicators most significantly affected by the presence of long COVID-19 were SpO and the ST intervals of ECG signals.

摘要

作为长新冠病例的监测和诊断工具,可穿戴系统和基于监督学习的医学图像分析已被证明是有用的。尽管这两种技术路线图各有优势,但当前对它们的研究都存在各种缺陷。可穿戴系统只能实时监测生理参数(心率、体温、血氧饱和度或 SpO)。因此,它们无法进行深入调查或区分 COVID-19 与其他具有相似症状的疾病。基于监督学习模型的医学图像分析可用于进行深入分析并提供精确的诊断决策支持。然而,这些方法很少用于实时监测。在这方面,我们提出了一种智能服装,将基于监督学习模型的精确性与可穿戴系统的实时监测能力相结合。鉴于心电图 (ECG) 信号与长新冠症状严重程度的相关性,一种基于多种机器学习模型的可解释数据融合策略利用心率、体温、SpO 和 ECG 信号分析来准确评估患者的健康状况。实验表明,所提出的智能服装达到了 97.5%的准确率,优于大多数现有的可穿戴系统。此外,还证实了受长新冠影响最显著的两个生理指标是 SpO 和 ECG 信号的 ST 间隔。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验