Suppr超能文献

可穿戴心电图设备与机器学习在心脏监测中的应用。

Wearable ECG Device and Machine Learning for Heart Monitoring.

机构信息

Department of Robotics and Technical Means of Automation, Satbayev University, Almaty 050013, Kazakhstan.

Department of Information Technologies and Library Affairs, Kazakh National Women's Teacher Training University, Almaty 050000, Kazakhstan.

出版信息

Sensors (Basel). 2024 Jun 28;24(13):4201. doi: 10.3390/s24134201.

Abstract

With cardiovascular diseases (CVD) remaining a leading cause of mortality, wearable devices for monitoring cardiac activity have gained significant, renewed interest among the medical community. This paper introduces an innovative ECG monitoring system based on a single-lead ECG machine, enhanced using machine learning methods. The system only processes and analyzes ECG data, but it can also be used to predict potential heart disease at an early stage. The wearable device was built on the ADS1298 and a microcontroller STM32L151xD. A server module based on the architecture style of the REST API was designed to facilitate interaction with the web-based segment of the system. The module is responsible for receiving data in real time from the microcontroller and delivering this data to the web-based segment of the module. Algorithms for analyzing ECG signals have been developed, including band filter artifact removal, K-means clustering for signal segmentation, and PQRST analysis. Machine learning methods, such as isolation forests, have been employed for ECG anomaly detection. Moreover, a comparative analysis with various machine learning methods, including logistic regression, random forest, SVM, XGBoost, decision forest, and CNNs, was conducted to predict the incidence of cardiovascular diseases. Convoluted neural networks (CNN) showed an accuracy of 0.926, proving their high effectiveness for ECG data processing.

摘要

由于心血管疾病 (CVD) 仍然是主要的死亡原因,可用于监测心脏活动的可穿戴设备在医疗界重新引起了极大的兴趣。本文介绍了一种基于单导联心电图机的创新 ECG 监测系统,该系统使用机器学习方法进行了增强。该系统仅处理和分析 ECG 数据,但也可用于早期预测潜在的心脏病。该可穿戴设备是基于 ADS1298 和微控制器 STM32L151xD 构建的。设计了一个基于 REST API 架构风格的服务器模块,以方便与系统的基于网络的部分进行交互。该模块负责实时从微控制器接收数据,并将此数据传递到模块的基于网络的部分。已经开发了用于分析 ECG 信号的算法,包括带通滤波器伪影去除、用于信号分段的 K-means 聚类以及 PQRST 分析。已经使用孤立森林等机器学习方法进行 ECG 异常检测。此外,还对各种机器学习方法(包括逻辑回归、随机森林、SVM、XGBoost、决策森林和 CNN)进行了比较分析,以预测心血管疾病的发病率。卷积神经网络 (CNN) 的准确率为 0.926,证明了它们在 ECG 数据处理方面的高效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9396/11244216/d1086f569a94/sensors-24-04201-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验