Suppr超能文献

基于深度学习的用药行为监测系统。

A deep learning-based medication behavior monitoring system.

机构信息

Department of Computer Engineering, Sungkyul University, Anyang 430-742, South Korea.

出版信息

Math Biosci Eng. 2021 Jan 28;18(2):1513-1528. doi: 10.3934/mbe.2021078.

Abstract

The internet of things (IoT) and deep learning are emerging technologies in diverse research fields, including the provision of IT services in medical domains. In the COVID-19 era, intelligent medication behavior monitoring systems for stable patient monitoring are further required, because many patients cannot easily visit hospitals. Several previous studies made use of wearable devices to detect medication behaviors of patients. However, the wearable devices cause inconvenience while equipping the devices. In addition, they suffer from inconsistency problems due to errors of measured values. We devise a medication behavior monitoring system that uses the IoT and deep learning to avoid sensing errors and improve user experiences by effectively detecting various activities of patients. Based on the real-time operation of our proposed IoT device, the proposed solution processes captured images of patents via OpenPose to check medication situations. The proposed system identifies medication status on time by using a human activity recognition scheme and provides various notifications to patients' mobile devices. To support reliable communication between our system and doctors, we employ MQTT protocol with periodic data transmissions. Thus, the measured information of patient's medication status is transmitted to the doctors so that they can periodically perform remote treatments. Experimental results show that all medication behaviors are accurately detected and notified to the doctor efficiently, improving the accuracy of monitoring the patient's medication behavior.

摘要

物联网 (IoT) 和深度学习是包括医疗领域 IT 服务提供在内的多个研究领域中的新兴技术。在 COVID-19 时代,还需要能够对稳定的患者进行智能药物行为监测的系统,因为许多患者无法轻易前往医院。之前的一些研究利用可穿戴设备来检测患者的药物使用行为。然而,这些可穿戴设备在佩戴设备时会带来不便,并且由于测量值的误差,它们还会出现不一致的问题。我们设计了一种药物行为监测系统,该系统使用物联网和深度学习来避免感测错误,并通过有效检测患者的各种活动来改善用户体验。基于我们提出的物联网设备的实时操作,该解决方案通过 OpenPose 处理捕获的患者图像,以检查药物使用情况。该系统通过使用人体活动识别方案及时识别药物状态,并向患者的移动设备发送各种通知。为了支持我们的系统和医生之间的可靠通信,我们使用带有定期数据传输的 MQTT 协议。因此,将患者药物使用状态的测量信息传输给医生,以便他们可以定期进行远程治疗。实验结果表明,所有的药物使用行为都能被准确地检测到,并及时通知医生,从而提高了监测患者药物使用行为的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验