Graduate Program in Bioinformatics and Genomics, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia.
Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia.
J Neurosci Methods. 2024 Nov;411:110256. doi: 10.1016/j.jneumeth.2024.110256. Epub 2024 Aug 24.
Although zebrafish are increasingly utilized in biomedicine for CNS disease modelling and drug discovery, this generates big data necessitating objective, precise and reproducible analyses. The artificial intelligence (AI) applications have empowered automated image recognition and video-tracking to ensure more efficient behavioral testing.
Capitalizing on several AI tools that most recently became available, here we present a novel open-access AI-driven platform to analyze tracks of adult zebrafish collected from in vivo neuropharmacological experiments. For this, we trained the AI system to distinguish zebrafish behavioral patterns following systemic treatment with several well-studied psychoactive drugs - nicotine, caffeine and ethanol.
Experiment 1 showed the ability of the AI system to distinguish nicotine and caffeine with 75 % and ethanol with 88 % probability and high (81 %) accuracy following a post-training exposure to these drugs. Experiment 2 further validated our system with additional, previously unexposed compounds (cholinergic arecoline and varenicline, and serotonergic fluoxetine), used as positive and negative controls, respectively.
The present study introduces a novel open-access AI-driven approach to analyze locomotor activity of adult zebrafish.
Taken together, these findings support the value of custom-made AI tools for unlocking full potential of zebrafish CNS drug research by monitoring, processing and interpreting the results of in vivo experiments.
尽管斑马鱼在神经中枢疾病建模和药物发现的生物医学领域中的应用日益广泛,但这也产生了大量数据,需要进行客观、精确和可重复的分析。人工智能 (AI) 应用程序已经实现了自动图像识别和视频跟踪,以确保更高效的行为测试。
利用最近可用的几种人工智能工具,我们在这里介绍了一种新颖的开放访问人工智能驱动的平台,用于分析来自体内神经药理学实验的成年斑马鱼的轨迹。为此,我们训练了 AI 系统,以区分在系统给予几种经过充分研究的精神药物(尼古丁、咖啡因和乙醇)后斑马鱼的行为模式。
实验 1 表明,AI 系统能够以 75%的概率区分尼古丁和咖啡因,以 88%的概率区分乙醇,并且在接受这些药物的后续训练后,具有 81%的高准确性。实验 2 进一步使用以前未暴露的化合物(胆碱能槟榔碱和伐仑克林,以及血清素能氟西汀)作为阳性和阴性对照,验证了我们的系统。
本研究介绍了一种新颖的开放访问人工智能驱动方法,用于分析成年斑马鱼的运动活动。
总之,这些发现支持定制 AI 工具的价值,通过监测、处理和解释体内实验的结果,来挖掘斑马鱼中枢神经系统药物研究的全部潜力。