ZebraML, Inc., Houston, TX, USA.
Institite of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Almazov National Medical Research Center, St. Petersburg, Russia; Neurobiology Program, Sirius University, Sochi, Russia.
Prog Neuropsychopharmacol Biol Psychiatry. 2022 Jan 10;112:110405. doi: 10.1016/j.pnpbp.2021.110405. Epub 2021 Jul 25.
Zebrafish (Danio rerio) are rapidly emerging in biomedicine as promising tools for disease modelling and drug discovery. The use of zebrafish for neuroscience research is also growing rapidly, necessitating novel reliable and unbiased methods of neurophenotypic data collection and analyses. Here, we applied the artificial intelligence (AI) neural network-based algorithms to a large dataset of adult zebrafish locomotor tracks collected previously in a series of in vivo experiments with multiple established psychotropic drugs. We first trained AI to recognize various drugs from a wide range of psychotropic agents tested, and then confirmed prediction accuracy of trained AI by comparing several agents with known similar behavioral and pharmacological profiles. Presenting a framework for innovative neurophenotyping, this proof-of-concept study aims to improve AI-driven movement pattern classification in zebrafish, thereby fostering drug discovery and development utilizing this key model organism.
斑马鱼(Danio rerio)作为疾病建模和药物发现的有前途的工具,在生物医学领域迅速崛起。斑马鱼在神经科学研究中的应用也在迅速增长,这需要新型的可靠和无偏的神经表型数据收集和分析方法。在这里,我们将基于人工智能(AI)神经网络的算法应用于先前在一系列体内实验中收集的大量成年斑马鱼运动轨迹数据集,这些实验使用了多种已建立的精神药物。我们首先训练 AI 从广泛的精神药物测试中识别各种药物,然后通过比较几种具有已知相似行为和药理学特征的药物来确认经过训练的 AI 的预测准确性。本概念验证研究提出了一种创新的神经表型分析框架,旨在提高斑马鱼中 AI 驱动的运动模式分类,从而利用这种关键模式生物促进药物发现和开发。