Suppr超能文献

对流层臭氧污染增加了北半球不同生态系统中植物生产对水汽压亏缺的敏感性。

Tropospheric ozone pollution increases the sensitivity of plant production to vapor pressure deficit across diverse ecosystems in the Northern Hemisphere.

机构信息

Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.

Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL, USA.

出版信息

Sci Total Environ. 2024 Nov 15;951:175748. doi: 10.1016/j.scitotenv.2024.175748. Epub 2024 Aug 23.

Abstract

Tropospheric ozone (O) pollution often accompanies droughts and heatwaves, which could collectively reduce plant productivity. Previous research suggested that O pollution can alter plant responses to drought by interfering with stomatal closure while drought can reduce stomatal conductance and provide protection against O stress. However, the interactions between O pollution and drought stress remain poorly understood at ecosystem scales with diverse plant functional types. To address this research gap, we used 10-year (2012-2021) satellite near-infrared reflectance of vegetation (NIRv) observations, reanalysis data of vapor pressure deficit (VPD), soil moisture (SM), and air temperature (Ta), along with O measurements and reanalysis data across the Northern Hemisphere to statistically disentangle the interconnections between NIRv, VPD, SM, and Ta under varying O levels. We found that high O concentrations significantly exacerbate the sensitivity of NIRv to VPD while have no notable impacts on the sensitivity of NIRv to Ta or SM for all plant functional types, indicating an enhanced combined impact of VPD and O on plants. Specifically, the sensitivity of NIRv to VPD increased by >75 % when O anomalies increased from the lowest 10 to the highest 10 percentiles across diverse plant functional types. This is likely because long-term exposure to high O concentrations can inhibit stomatal closure and photosynthetic enzyme activities, resulting in reduced water use efficiency and photosynthetic efficiency. This study highlights the need to consider O in understanding plant responses to climate factors and that O can alter plant responses to VPD independently of Ta and SM.

摘要

对流层臭氧 (O) 污染通常伴随着干旱和热浪,这可能会共同降低植物生产力。先前的研究表明,O 污染可以通过干扰气孔关闭来改变植物对干旱的反应,而干旱可以降低气孔导度并提供对 O 胁迫的保护。然而,在具有不同植物功能类型的生态系统尺度上,O 污染和干旱胁迫之间的相互作用仍知之甚少。为了解决这一研究空白,我们使用了 10 年(2012-2021 年)的植被近红外反射率卫星观测、水汽压亏缺 (VPD)、土壤湿度 (SM) 和空气温度 (Ta) 的再分析数据,以及北半球的 O 测量和再分析数据,从统计学上分解了不同 O 水平下 NIRv、VPD、SM 和 Ta 之间的相互关系。我们发现,高 O 浓度显著加剧了 NIRv 对 VPD 的敏感性,而对 NIRv 对 Ta 或 SM 的敏感性没有显著影响,这表明 VPD 和 O 对植物的综合影响增强。具体来说,当 O 异常从最低的 10%增加到最高的 10%时,NIRv 对 VPD 的敏感性增加了超过 75%,跨越不同的植物功能类型。这可能是因为长期暴露在高 O 浓度下会抑制气孔关闭和光合作用酶的活性,导致水分利用效率和光合作用效率降低。本研究强调了在理解植物对气候因素的反应时需要考虑 O 的重要性,并且 O 可以独立于 Ta 和 SM 改变植物对 VPD 的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验