Suppr超能文献

利用产油酵母解脂耶氏酵母进行 2-苯乙醇的过量生产的代谢工程改造。

Metabolic engineering of the oleaginous yeast Yarrowia lipolytica for 2-phenylethanol overproduction.

机构信息

Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shang Hai 200237, China.

出版信息

Bioresour Technol. 2024 Nov;411:131354. doi: 10.1016/j.biortech.2024.131354. Epub 2024 Aug 27.

Abstract

The rose fragrance molecule 2-phenylethanol (2-PE) has huge market demand in the cosmetics, food and pharmaceutical industries. However, current 2-PE synthesis methods do not meet the efficiency market requirement. In this study, CRISPR-Cas9-related metabolic engineering strategies were applied to Yarrowia lipolytica for the de novo biosynthesis of 2-PE. Initially, overexpressing exogenous feedback-resistant EcAROG and EcPheA increased 2-PE production to 276.3 mg/L. Subsequently, the ylARO10 and ylPAR4 from endogenous genes were enhanced with the multi-copies to increase the titer to 605 mg/L. Knockout of ylTYR1 and enhancement of shikimate pathway by removing the precursor metabolic bottleneck and overexpressing the genes ylTKT, ylARO1, and ylPHA2 resulted in a significant increase of the 2-PE titer to 2.4 g/L at 84 h, with the yield of 0.06 g/g, which is the highest yield for de novo synthesis in yeast. This study provides a valuable precedent for the efficient biosynthesis of shikimate pathway derivatives.

摘要

玫瑰香味分子 2-苯乙醇(2-PE)在化妆品、食品和制药行业具有巨大的市场需求。然而,目前的 2-PE 合成方法无法满足市场效率的要求。在这项研究中,CRISPR-Cas9 相关的代谢工程策略被应用于解脂耶氏酵母,用于 2-PE 的从头生物合成。最初,过表达外源反馈抗性 EcAROG 和 EcPheA 将 2-PE 的产量提高到 276.3mg/L。随后,通过多拷贝增强内源性基因 ylARO10 和 ylPAR4,将浓度提高到 605mg/L。敲除 ylTYR1 并通过去除前体代谢瓶颈和过表达基因 ylTKT、ylARO1 和 ylPHA2 增强芳香族氨基酸生物合成途径,将 2-PE 的浓度在 84 小时内显著提高到 2.4g/L,产率为 0.06g/g,这是酵母中从头合成的最高产率。这项研究为芳香族氨基酸生物合成途径衍生物的高效生物合成提供了有价值的先例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验