Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States.
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
ACS Synth Biol. 2020 Mar 20;9(3):623-633. doi: 10.1021/acssynbio.9b00468. Epub 2020 Mar 12.
Efficient microbial synthesis of chemicals requires the coordinated supply of precursors and cofactors to maintain cell growth and product formation. Substrates with different entry points into the metabolic network have different energetic and redox statuses. Generally, substrate cofeeding could bypass the lengthy and highly regulated native metabolism and facilitates high carbon conversion rate. Aiming to efficiently synthesize the high-value rose-smell 2-phenylethanol (2-PE) in , we analyzed the stoichiometric constraints of the Ehrlich pathway and identified that the selectivity of the Ehrlich pathway and the availability of 2-oxoglutarate are the rate-limiting factors. Stepwise refactoring of the Ehrlich pathway led us to identify the optimal catalytic modules consisting of l-phenylalanine permease, ketoacid aminotransferase, phenylpyruvate decarboxylase, phenylacetaldehyde reductase, and alcohol dehydrogenase. On the other hand, mitochondrial compartmentalization of 2-oxoglutarate inherently creates a bottleneck for efficient assimilation of l-phenylalanine, which limits 2-PE production. To improve 2-oxoglutarate (aKG) trafficking across the mitochondria membrane, we constructed a cytosolic aKG source pathway by coupling a bacterial aconitase with a native isocitrate dehydrogenase (ylIDP2). Additionally, we also engineered dicarboxylic acid transporters to further improve the 2-oxoglutarate availability. Furthermore, by blocking the precursor-competing pathways and mitigating fatty acid synthesis, the engineered strain produced 2669.54 mg/L of 2-PE in shake flasks, a 4.16-fold increase over the starting strain. The carbon conversion yield reaches 0.702 g/g from l-phenylalanine, 95.0% of the theoretical maximal. The reported work expands our ability to harness the Ehrlich pathway for production of high-value aromatics in oleaginous yeast species.
高效微生物合成化学品需要协调提供前体和辅因子,以维持细胞生长和产物形成。具有不同进入代谢网络入口点的底物具有不同的能量和氧化还原状态。一般来说,底物共喂养可以绕过冗长且高度调节的天然代谢途径,促进高碳转化率。为了高效合成高附加值的玫瑰香味 2-苯乙醇(2-PE),我们分析了 Ehrlich 途径的化学计量约束,并确定 Ehrlich 途径的选择性和 2-氧戊二酸的可用性是限速因素。逐步重构 Ehrlich 途径使我们能够确定由 l-苯丙氨酸渗透酶、酮酸氨基转移酶、苯丙酮酸脱羧酶、苯乙醛还原酶和醇脱氢酶组成的最佳催化模块。另一方面,线粒体 2-氧戊二酸的区室化本质上为 l-苯丙氨酸的有效同化创造了瓶颈,限制了 2-PE 的生产。为了改善 2-氧戊二酸(aKG)穿过线粒体膜的运输,我们通过将细菌 aconitase 与天然异柠檬酸脱氢酶(ylIDP2)偶联来构建细胞质 aKG 源途径。此外,我们还设计了二羧酸转运蛋白以进一步提高 2-氧戊二酸的可用性。此外,通过阻断前体竞争途径和减轻脂肪酸合成,工程菌株在摇瓶中产生了 2669.54mg/L 的 2-PE,比起始菌株提高了 4.16 倍。从 l-苯丙氨酸的碳转化率达到 0.702g/g,达到理论最大值的 95.0%。该报告工作扩展了我们利用 Ehrlich 途径在油脂酵母物种中生产高附加值芳烃的能力。