Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.
Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; Biological Systems Engineering Department, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.
Bioresour Technol. 2024 Nov;411:131330. doi: 10.1016/j.biortech.2024.131330. Epub 2024 Aug 23.
Biomethanation converts carbon dioxide (CO) emissions into renewable natural gas (RNG) using mixed microbial cultures enriched with hydrogenotrophic archaea. This study examines the performance of a single methanogenic archaeon converting biogas with added hydrogen (H) into methane (CH) using a trickle-bed bioreactor with enhanced gas-liquid mass transport. The process in continuous operation followed the theoretical reaction of hydrogenotrophic methanogenesis (CO + 4 H → CH + 2 HO), producing RNG with over 99 % CH and more than 0.9 H conversion efficiency. The Monod constants of H uptake were experimentally determined using kinetic modelling. Also, a dimensionless parameter was used to quantify the ratio between the H mass transfer rate and the maximum attainable H consumption rate. Single-culture biomethanation averts the formation of secondary metabolites and bicarbonate buffer interferences, resulting in lower demands for H than mixed-culture biomethanation.
生物甲烷化利用富含产氢古菌的混合微生物培养物将二氧化碳(CO)排放转化为可再生天然气(RNG)。本研究使用具有增强气液传质的滴流床生物反应器,考察了单一产甲烷古菌将沼气与添加的氢气(H)转化为甲烷(CH)的性能。该过程在连续操作下遵循产氢甲烷化的理论反应(CO + 4 H → CH + 2 HO),产生的 RNG 中 CH 含量超过 99%,H 转化率超过 0.9。采用动力学模型实验测定了 H 吸收的 Monod 常数。此外,还使用无量纲参数来量化 H 传质速率与最大可达到的 H 消耗速率之间的比值。与混合培养物生物甲烷化相比,单一培养物生物甲烷化避免了次生代谢物和碳酸氢盐缓冲干扰的形成,因此对 H 的需求较低。