Obeid Pierre J, Yammine Paolo, El-Nakat Hanna, Kassab Rima, Tannous Tony, Nasr Zeina, Maarawi Therese, Dahdah Norma, El Safadi Ali, Mansour Agapy, Chmayssem Ayman
Department of Chemistry, Faculty of Arts and Sciences, University of Balamand, P.O. Box: 100, Tripoli, Lebanon.
Faculty of Health Sciences, University of Balamand, University of Balamand, P.O. Box: 100, Tripoli, Lebanon.
Chembiochem. 2024 Dec 2;25(23):e202400580. doi: 10.1002/cbic.202400580. Epub 2024 Oct 23.
Organ-On-a-Chip (OOC) is a multichannel 3D-microfluidic cell-culture system incorporated in a chip that simulates the behavior of an organ. This technology relies on a multidisciplinary science that benefits from and contributes in the progress of many fields including microbiology, microfluidics, biomaterials, and bioengineering. This review article summarizes the progress and achievements of various organ-on-chip technologies. It highlights the significant advantages of this technology in terms of reducing animal testing and providing personalized medical responses. In addition, this paper demonstrates how OOC is becoming a promising and powerful tool in pharmaceutical research to combat diseases. It predicts not only the effects of drugs on the target organs but also, using body-on-a-chip systems, it may provide insights into the side effects of the drug delivery on the other organs. Likewise, the models used for the construction of various organ-on-a-chip devices are investigated along with the design and materials of microfluidic devices. For each OOC, the integrated monitoring devices within the chips (e. g., sensors and biosensors) are discussed. We also discuss the evolution of FDA regulations and the potential in the near future for integrating OOCs into protocols that support and reduce the need for and the failure rates in preclinical and clinical studies.
器官芯片(OOC)是一种集成在芯片中的多通道3D微流控细胞培养系统,可模拟器官的行为。这项技术依赖于多学科科学,受益于包括微生物学、微流控、生物材料和生物工程在内的许多领域的进步,并为这些领域的发展做出贡献。这篇综述文章总结了各种器官芯片技术的进展和成就。它强调了这项技术在减少动物实验和提供个性化医疗反应方面的显著优势。此外,本文展示了器官芯片如何成为药物研究中对抗疾病的一种有前途且强大的工具。它不仅可以预测药物对靶器官的作用,而且使用芯片上的人体系统,还可以深入了解药物递送对其他器官的副作用。同样,研究了用于构建各种器官芯片装置的模型以及微流控装置的设计和材料。对于每个器官芯片,还讨论了芯片内的集成监测装置(例如传感器和生物传感器)。我们还讨论了美国食品药品监督管理局(FDA)法规的演变以及在不久的将来将器官芯片整合到支持并减少临床前和临床研究的需求及失败率的方案中的潜力。