Roche Informatics, F. Hoffmann-La Roche Ltd, Poznań, Poland.
Computational Biology & Translation, Genentech Inc., South San Francisco, CA, USA.
Nat Commun. 2024 Aug 25;15(1):7316. doi: 10.1038/s41467-024-51584-3.
Accurate detection and quantification of mRNA isoforms from nanopore long-read sequencing remains challenged by technical noise, particularly in single cells. To address this, we introduce Isosceles, a computational toolkit that outperforms other methods in isoform detection sensitivity and quantification accuracy across single-cell, pseudo-bulk and bulk resolution levels, as demonstrated using synthetic and biologically-derived datasets. Here we show Isosceles improves the fidelity of single-cell transcriptome quantification at the isoform-level, and enables flexible downstream analysis. As a case study, we apply Isosceles, uncovering coordinated splicing within and between neuronal differentiation lineages. Isosceles is suitable to be applied in diverse biological systems, facilitating studies of cellular heterogeneity across biomedical research applications.
从纳米孔长读测序中准确检测和定量 mRNA 异构体仍然受到技术噪声的挑战,特别是在单细胞中。为了解决这个问题,我们引入了等腰三角形,这是一个计算工具包,在单细胞、伪群体和群体分辨率水平上,在异构体检测灵敏度和定量准确性方面都优于其他方法,这在使用合成和生物衍生数据集时得到了证明。在这里,我们展示了等腰三角形如何提高单细胞转录组在异构体水平上的定量保真度,并能够进行灵活的下游分析。作为一个案例研究,我们应用等腰三角形,揭示了神经元分化谱系内和之间的协调剪接。等腰三角形适用于各种生物系统,有助于在生物医学研究应用中研究细胞异质性。