Yang Sungbin, Chu Jinwoo, Park Jihye, Kim Hyungjun, Shin Byungha
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202411909. doi: 10.1002/anie.202411909. Epub 2024 Oct 22.
The lithium-mediated nitrogen reduction reaction (Li-NRR) offers a viable alternative to the Haber-Bosch process for ammonia production. However, ethanol, a common proton carrier in Li-NRR, exhibits electrochemical instability, leading to oxidation at the anode or byproduct formation at the cathode. This study replaces alcoholic proton carriers with ionic liquids (ILs), specifically tetrabutylphosphonium chloride (TBPCl) and tetrabutylammonium chloride (TBACl), to examine how the electronegativity differences between the central atom and adjacent carbon of the cation affect catalytic performance. The results show that switching the central atom in tetraalkyl-type ILs markedly enhances performance, specifically resulting in a 1.45-fold increase in Faradaic efficiency (FE) with the transition from phosphonium to ammonium cation of ILs. Additionally, optimal IL concentrations in the electrolyte are identified to maximize ammonia yield. TBACl, in particular, demonstrates enhanced ammonia production and operational stability, achieving an ammonia yield rate of 13.60 nmol/cm/s, an FE of 39.5 %, and operational stability for over 12 h under conditions of 10 mA/cm and 10 atm. This research underscores the potential of precise IL modifications for more efficient and sustainable Li-NRR.
锂介导的氮还原反应(Li-NRR)为哈伯-博施法生产氨提供了一种可行的替代方法。然而,乙醇是Li-NRR中常见的质子载体,具有电化学不稳定性,会导致在阳极发生氧化或在阴极形成副产物。本研究用离子液体(ILs),特别是四丁基氯化鏻(TBPCl)和四丁基氯化铵(TBACl)取代醇类质子载体,以研究阳离子中心原子与相邻碳原子之间的电负性差异如何影响催化性能。结果表明,在四烷基型离子液体中切换中心原子可显著提高性能,特别是随着离子液体从鏻阳离子转变为铵阳离子,法拉第效率(FE)提高了1.45倍。此外,还确定了电解质中的最佳离子液体浓度,以最大限度地提高氨产量。特别是TBACl,在10 mA/cm和10 atm的条件下,其氨产量和操作稳定性得到增强,氨产率为13.60 nmol/cm/s,法拉第效率为39.5%,操作稳定性超过12小时。这项研究强调了精确修饰离子液体对于更高效、可持续的锂介导氮还原反应的潜力。