State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216, China.
Adv Mater. 2023 May;35(21):e2211894. doi: 10.1002/adma.202211894. Epub 2023 Mar 30.
As a widely used commodity chemical, ammonia is critical for producing nitrogen-containing fertilizers and serving as the promising zero-carbon energy carrier. Photoelectrochemical nitrogen reduction reaction (PEC NRR) can provide a solar-powered green and sustainable route for synthesis of ammonia (NH ). Herein, an optimum PEC system is reported with an Si-based hierarchically-structured PdCu/TiO /Si photocathode and well-thought-out trifluoroethanol as the proton source for lithium-mediated PEC NRR, achieving a record high NH yield of 43.09 µg cm h and an excellent faradaic efficiency of 46.15% under 0.12 MPa O and 3.88 MPa N at 0.07 V versus lithium(0/+) redox couple (vs Li ). PEC measurements coupled with operando characterization reveal that the PdCu/TiO /Si photocathode under N pressures facilitate the reduction of N to form lithium nitride (Li N), which reacts with active protons to produce NH while releasing the Li to reinitiate the cycle of the PEC NRR. The Li-mediated PEC NRR process is further enhanced by introducing small amount of O or CO under pressure by accelerating the decomposition of Li N. For the first time, this work provides mechanistic understanding of the lithium-mediated PEC NRR process and opens new avenues for efficient solar-powered green conversion of N -to-NH .
氨作为一种广泛使用的商品化学品,对于生产含氮肥料和作为有前途的零碳能源载体至关重要。光电化学氮还原反应(PEC NRR)可以为合成氨(NH )提供一种太阳能驱动的绿色可持续途径。在此,报告了一种优化的 PEC 系统,该系统采用基于 Si 的分级结构 PdCu/TiO /Si 光阴极和经过深思熟虑的三氟乙醇作为质子源,用于锂介导的 PEC NRR,在 0.07 V 相对于锂(0/+)氧化还原对(vs Li )下,在 0.12 MPa O 和 3.88 MPa N 下实现了 43.09 µg cm h 的创纪录高 NH 产率和 46.15%的优异法拉第效率。PEC 测量与原位表征相结合表明,在 N 压力下,PdCu/TiO /Si 光阴极有利于将 N 还原形成氮化锂(Li N),然后与活性质子反应生成 NH ,同时释放 Li 以重新启动 PEC NRR 循环。通过在压力下引入少量 O 或 CO,进一步增强了锂介导的 PEC NRR 过程,从而加速 Li N 的分解。这项工作首次提供了对锂介导的 PEC NRR 过程的机制理解,并为高效太阳能驱动的 N 到 NH 的绿色转化开辟了新途径。