Suppr超能文献

使用U-Net对模拟乳腺断层合成图像中的可疑发现进行多类分割。

Multiclass Segmentation of Suspicious Findings in Simulated Breast Tomosynthesis Images Using a U-Net.

作者信息

da Nobrega Yann N G, Carvalhal Giulia, Teixeira João P V, de Camargo Barbara P, do Rego Thais G, Malheiros Yuri, Silva Filho Telmo de M E, Vent Trevor L, Acciavatti Raymond J, Maidment Andrew D A, Barufaldi Bruno

机构信息

Federal University of Paraíba, João Pessoa, Brazil.

Federal University of Campina Grande, Campina Grande, Brazil.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 May;12286. doi: 10.1117/12.2626225. Epub 2022 Jul 13.

Abstract

Our lab has built a next-generation tomosynthesis (NGT) system utilizing scanning motions with more degrees of freedom than clinical digital breast tomosynthesis systems. We are working toward designing scanning motions that are customized around the locations of suspicious findings. The first step in this direction is to demonstrate that these findings can be detected with a single projection image, which can guide the remainder of the scan. This paper develops an automated method to identify findings that are prone to be masked. Perlin-noise phantoms and synthetic lesions were used to simulate masked cancers. NGT projections of phantoms were simulated using ray-tracing software. The risk of masking cancers was mapped using the ground-truth labels of phantoms. The phantom labels were used to denote regions of low and high risk of masking suspicious findings. A U-Net model was trained for multiclass segmentation of phantom images. Model performance was quantified with a receiver operating characteristic (ROC) curve using area under the curve (AUC). The ROC operating point was defined to be the point closest to the upper left corner of ROC space. The output predictions showed an accurate segmentation of tissue predominantly adipose (mean AUC of 0.93). The predictions also indicate regions of suspicious findings; for the highest risk class, mean AUC was 0.89, with a true positive rate of 0.80 and a true negative rate of 0.83 at the operating point. In summary, this paper demonstrates with virtual phantoms that a single projection can indeed be used to identify suspicious findings.

摘要

我们的实验室构建了一种新一代断层合成(NGT)系统,该系统利用了比临床数字乳腺断层合成系统具有更多自由度的扫描运动。我们正在努力设计围绕可疑发现位置进行定制的扫描运动。朝着这个方向的第一步是证明这些发现可以通过单个投影图像检测到,这可以指导扫描的其余部分。本文开发了一种自动方法来识别容易被掩盖的发现。使用柏林噪声体模和合成病变来模拟被掩盖的癌症。使用光线追踪软件模拟体模的NGT投影。利用体模的真实标签绘制掩盖癌症的风险图。体模标签用于表示掩盖可疑发现的低风险和高风险区域。训练了一个U-Net模型用于体模图像的多类分割。使用曲线下面积(AUC)通过接收器操作特性(ROC)曲线对模型性能进行量化。ROC操作点定义为最接近ROC空间左上角的点。输出预测显示对主要为脂肪组织的准确分割(平均AUC为0.93)。预测还指出了可疑发现的区域;对于最高风险类别,平均AUC为0.89,在操作点处真阳性率为0.80,真阴性率为0.83。总之,本文通过虚拟体模证明单个投影确实可以用于识别可疑发现。

相似文献

1
Multiclass Segmentation of Suspicious Findings in Simulated Breast Tomosynthesis Images Using a U-Net.
Proc SPIE Int Soc Opt Eng. 2022 May;12286. doi: 10.1117/12.2626225. Epub 2022 Jul 13.
4
Personalization of X-Ray Tube Motion in Digital Breast Tomosynthesis Using Virtual Defrise Phantoms.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10948. doi: 10.1117/12.2511780. Epub 2019 Mar 1.
5
Novel Perlin-based Phantoms Using 3D Models of Compressed Breast Shape and Fractal Noise.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612565. Epub 2022 Apr 4.
7
Spatial dependency of lesion detectability in digital breast tomosynthesis.
Proc SPIE Int Soc Opt Eng. 2022 May;12286. doi: 10.1117/12.2626272. Epub 2022 Jul 13.
8
9
Analysis of Volume Overestimation Artifacts in the Breast Outline Segmentation in Tomosynthesis.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10573. doi: 10.1117/12.2293253. Epub 2018 Mar 9.

本文引用的文献

1
Personalization of X-Ray Tube Motion in Digital Breast Tomosynthesis Using Virtual Defrise Phantoms.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10948. doi: 10.1117/12.2511780. Epub 2019 Mar 1.
2
Computer simulations of case difficulty in digital breast tomosynthesis using virtual clinical trials.
Med Phys. 2022 Apr;49(4):2220-2232. doi: 10.1002/mp.15553. Epub 2022 Mar 4.
3
Computational Breast Anatomy Simulation Using Multi-Scale Perlin Noise.
IEEE Trans Med Imaging. 2021 Dec;40(12):3436-3445. doi: 10.1109/TMI.2021.3087958. Epub 2021 Nov 30.
4
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.
5
Investigating the feasibility of stratified breast cancer screening using a masking risk predictor.
Breast Cancer Res. 2019 Aug 9;21(1):91. doi: 10.1186/s13058-019-1179-z.
6
Breast density implications and supplemental screening.
Eur Radiol. 2019 Apr;29(4):1762-1777. doi: 10.1007/s00330-018-5668-8. Epub 2018 Sep 25.
8
The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling.
Phys Med Biol. 2017 Aug 7;62(17):6920-6937. doi: 10.1088/1361-6560/aa7cd0.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验