Hussain Iftak, Boza Juan, Lukande Robert, Ayanga Racheal, Semeere Aggrey, Cesarman Ethel, Martin Jeffrey, Maurer Toby, Erickson David
Res Sq. 2024 Aug 17:rs.3.rs-4736178. doi: 10.21203/rs.3.rs-4736178/v1.
Immunohistochemical (IHC) staining for the antigen of Kaposi sarcoma-associated herpesvirus (KSHV), latency-associated nuclear antigen (LANA), is helpful in diagnosing Kaposi sarcoma (KS). A challenge, however, lies in distinguishing anti-LANA-positive cells from morphologically similar brown counterparts. In this work, we demonstrate a framework for automated localization and quantification of LANA positivity in whole slide images (WSI) of skin biopsies, leveraging weakly supervised multiple instance learning (MIL) while reducing false positive predictions by introducing a novel morphology-based slide aggregation method. Our framework generates interpretable heatmaps, offering insights into precise anti-LANA-positive cell localization within WSIs and a quantitative value for the percentage of positive tiles, which may assist with histological subtyping. We trained and tested our framework with an anti-LANA-stained KS pathology dataset prepared by pathologists in the United States from skin biopsies of KS-suspected patients investigated in Uganda. We achieved an area under the receiver operating characteristic curve (AUC) of 0.99 with a sensitivity and specificity of 98.15% and 96.00% in predicting anti-LANA-positive WSIs in a test dataset. We believe that the framework can provide promise for automated detection of LANA in skin biopsies, which may be especially impactful in resource-limited areas that lack trained pathologists.
对卡波西肉瘤相关疱疹病毒(KSHV)的抗原——潜伏相关核抗原(LANA)进行免疫组织化学(IHC)染色,有助于诊断卡波西肉瘤(KS)。然而,一项挑战在于将抗LANA阳性细胞与形态相似的棕色细胞区分开来。在这项工作中,我们展示了一个用于在皮肤活检全玻片图像(WSI)中自动定位和定量LANA阳性的框架,利用弱监督多实例学习(MIL),同时通过引入一种新颖的基于形态学的玻片聚集方法减少假阳性预测。我们的框架生成可解释的热图,深入了解WSI内精确的抗LANA阳性细胞定位以及阳性切片百分比的定量值,这可能有助于组织学亚型分类。我们使用美国病理学家从乌干达疑似KS患者的皮肤活检中制备的抗LANA染色KS病理数据集对我们的框架进行了训练和测试。在测试数据集中预测抗LANA阳性WSI时,我们实现了受试者操作特征曲线(AUC)下面积为0.99,灵敏度和特异性分别为98.15%和96.00%。我们相信该框架可为皮肤活检中LANA的自动检测带来希望,这在缺乏训练有素的病理学家的资源有限地区可能尤其具有影响力。