Suppr超能文献

皮肤活检免疫组织化学图像中卡波西肉瘤相关疱疹病毒感染细胞的自动检测

Automated Detection of Kaposi Sarcoma-Associated Herpesvirus-Infected Cells in Immunohistochemical Images of Skin Biopsies.

作者信息

Hussain Iftak, Boza Juan, Lukande Robert, Ayanga Racheal, Semeere Aggrey, Cesarman Ethel, Martin Jeffrey, Maurer Toby, Erickson David

机构信息

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY.

Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY.

出版信息

JCO Glob Oncol. 2025 Apr;11:e2400536. doi: 10.1200/GO-24-00536. Epub 2025 Apr 16.

Abstract

PURPOSE

Immunohistochemical staining for the antigen of Kaposi sarcoma (KS)-associated herpesvirus, latency-associated nuclear antigen (LANA), is helpful in diagnosing KS. A challenge lies in distinguishing anti-LANA-positive cells from morphologically similar brown counterparts. This work aims to develop an automated framework for localization and quantification of LANA positivity in whole-slide images (WSI) of skin biopsies.

METHODS

The proposed framework leverages weakly supervised multiple-instance learning (MIL) to reduce false-positive predictions. A novel morphology-based slide aggregation method is introduced to improve accuracy. The framework generates interpretable heatmaps for cell localization and provides quantitative values for the percentage of positive tiles. The framework was trained and tested with a KS pathology data set prepared from skin biopsies of KS-suspected patients in Uganda.

RESULTS

The developed MIL framework achieved an area under the receiver operating characteristic curve of 0.99, with a sensitivity of 98.15% and specificity of 96.00% in predicting anti-LANA-positive WSIs in a test data set.

CONCLUSION

The framework shows promise for the automated detection of LANA in skin biopsies, offering a reliable and accurate tool for identifying anti-LANA-positive cells. This method may be especially impactful in resource-limited areas that lack trained pathologists, potentially improving diagnostic capabilities in settings with limited access to expert analysis.

摘要

目的

对卡波西肉瘤(KS)相关疱疹病毒的潜伏相关核抗原(LANA)进行免疫组织化学染色有助于诊断KS。一个挑战在于将抗LANA阳性细胞与形态相似的棕色细胞区分开来。这项工作旨在开发一个自动化框架,用于在皮肤活检全切片图像(WSI)中定位和定量LANA阳性情况。

方法

所提出的框架利用弱监督多实例学习(MIL)来减少假阳性预测。引入了一种基于形态学的玻片聚集新方法以提高准确性。该框架生成用于细胞定位的可解释热图,并为阳性切片的百分比提供定量值。使用从乌干达疑似KS患者的皮肤活检样本中制备的KS病理数据集对该框架进行训练和测试。

结果

在测试数据集中预测抗LANA阳性WSI时,所开发的MIL框架的受试者操作特征曲线下面积为0.99,灵敏度为98.15%,特异性为96.00%。

结论

该框架在皮肤活检中自动检测LANA方面显示出前景,为识别抗LANA阳性细胞提供了一种可靠且准确的工具。这种方法在缺乏训练有素的病理学家的资源有限地区可能特别有影响力,有可能提高在难以获得专家分析的环境中的诊断能力。

相似文献

本文引用的文献

9
On Edge Computing for Remote Pathology Consultations and Computations.边缘计算在远程病理咨询和计算中的应用。
IEEE J Biomed Health Inform. 2020 Sep;24(9):2523-2534. doi: 10.1109/JBHI.2020.3007661. Epub 2020 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验