Suppr超能文献

超高迁移率的微生物细胞色素纳米线可从湿度中获取能量。

Ultrahigh-mobility microbial cytochrome nanowires generate power from humidity.

作者信息

Dahl Peter, Neu Jens, Gu Yangqi, Shipps Catharine, Batista Victor, Malvankar Nikhil

出版信息

Res Sq. 2024 Aug 12:rs.3.rs-4724466. doi: 10.21203/rs.3.rs-4724466/v1.

Abstract

Mixed electronic-ionic conductors are crucial for various technologies, including harvesting power from humidity in a durable, self-sustainable, manner unrestricted by location or environment . Biological proteins have been proposed as mixed conductors for 50 years . Recently, pili filaments have been claimed to act as nanowires to generate power . Here, we show that the power is generated by -produced cytochrome OmcZ nanowires that show 20,000-fold higher electron conductivity than pili . Remarkably, nanowires show ultrahigh electron and proton mobility (>0.25 cm2/Vs), owing to directional charge migration through seamlessly-stacked hemes and a charged, hydrogen-bonding surface, respectively. AC impedance spectroscopy and DC conductivity measurements using four-probe van der Pauw and back-gated field-effect-transistor devices reveal that humidity increases carrier mobility by 30,000-fold. Cooling halves the activation energy, thereby accelerating charge transport. Electrochemical measurements identify the voltage and mobilities required to switch pure electronic conduction to mixed conduction for power generation. The high aspect ratio (1:1000) and hydrophilic nanowire surface captures moisture efficiently to reduce oxygen reversibly, generating large potentials (>0.5 V) necessary to sustain high power. Our studies establish a new class of biologically-synthesized, low-cost and high-performance mixed-conductors and identify key design principles for improving power output using highly-tunable electronic and protein structures.

摘要

混合电子 - 离子导体对各种技术至关重要,包括以持久、自我维持的方式从湿度中获取能量,不受位置或环境限制。生物蛋白质作为混合导体已有50年的历史。最近,菌毛丝被认为可作为纳米线来发电。在此,我们表明,发电是由产生的细胞色素OmcZ纳米线实现的,其电子传导率比菌毛高20000倍。值得注意的是,纳米线显示出超高的电子和质子迁移率(>0.25 cm2/Vs),这分别归因于通过无缝堆叠的血红素的定向电荷迁移和带电的氢键表面。使用四探针范德堡和背栅场效应晶体管器件进行的交流阻抗谱和直流电导率测量表明,湿度使载流子迁移率提高了30000倍。冷却使活化能减半,从而加速电荷传输。电化学测量确定了将纯电子传导转换为混合传导以进行发电所需的电压和迁移率。高纵横比(1:1000)和亲水性纳米线表面有效地捕获水分,以可逆方式减少氧气,产生维持高功率所需的大电位(>0.5 V)。我们的研究建立了一类新型的生物合成、低成本且高性能的混合导体,并确定了利用高度可调的电子和蛋白质结构提高功率输出的关键设计原则。

相似文献

3
Protein Nanowires.蛋白质纳米线
Front Microbiol. 2019 Sep 24;10:2078. doi: 10.3389/fmicb.2019.02078. eCollection 2019.
6
Microbial nanowires: type IV pili or cytochrome filaments?微生物纳米线:是 IV 型菌毛还是细胞色素丝?
Trends Microbiol. 2023 Apr;31(4):384-392. doi: 10.1016/j.tim.2022.11.004. Epub 2022 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验