Čunátová Kristýna, Vrbacký Marek, Puertas-Frias Guillermo, Alán Lukáš, Vanišová Marie, Saucedo-Rodríguez María José, Houštěk Josef, Fernández-Vizarra Erika, Neužil Jiří, Pecinová Alena, Pecina Petr, Mráček Tomáš
Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic.
Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy.
iScience. 2024 Jul 19;27(8):110560. doi: 10.1016/j.isci.2024.110560. eCollection 2024 Aug 16.
Individual complexes of the mitochondrial oxidative phosphorylation system (OXPHOS) are not linked solely by their function; they also share dependencies at the maintenance/assembly level, where one complex depends on the presence of a different individual complex. Despite the relevance of this "interdependence" behavior for mitochondrial diseases, its true nature remains elusive. To understand the mechanism that can explain this phenomenon, we examined the consequences of the aberration of different OXPHOS complexes in human cells. We demonstrate here that the complete disruption of each of the OXPHOS complexes resulted in a decrease in the complex I (cI) level and that the major reason for this is linked to the downregulation of mitochondrial ribosomal proteins. We conclude that the secondary cI defect is due to mitochondrial protein synthesis attenuation, while the responsible signaling pathways could differ based on the origin of the OXPHOS defect.
线粒体氧化磷酸化系统(OXPHOS)的各个复合物并非仅通过其功能相互联系;它们在维持/组装水平上也存在相互依赖关系,即一个复合物依赖于另一个不同复合物的存在。尽管这种“相互依赖”行为与线粒体疾病相关,但其本质仍不清楚。为了理解能够解释这一现象的机制,我们研究了人类细胞中不同OXPHOS复合物异常的后果。我们在此证明,每个OXPHOS复合物的完全破坏都会导致复合物I(cI)水平下降,其主要原因与线粒体核糖体蛋白的下调有关。我们得出结论,继发性cI缺陷是由于线粒体蛋白质合成减弱,而负责的信号通路可能因OXPHOS缺陷的起源而异。