用于增强光合作用的纳米光子电子转移新方法:等离子体增强化学能量转移背后的生物物理原理。

Novel Approach of Nanophotonic Electron Transfer for Augmenting Photosynthesis in : A Biophysical Rationale behind the Plasmonic Enhancement of Chemical Energy Transfer.

作者信息

Dhiman Shikha, Debnath Nitai, Bandyopadhyay Kaustav, Das Sumistha

机构信息

Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India.

出版信息

ACS Omega. 2024 Aug 8;9(33):35332-35347. doi: 10.1021/acsomega.4c00550. eCollection 2024 Aug 20.

Abstract

Plant photosynthetic machinery is the main source of acquisition and conversion of solar energy to chemical energy with the capacity for autonomous self-repair. However, the major limitation of the chloroplast photosystem is that it can absorb light only within the visible range of the spectrum, which is roughly 50% of the incident solar radiation. Moreover, the photosynthetic apparatus is saturated by less than 10% of available sunlight. If the capacity of solar light absorption and the transmission of resulting photons through the photosynthetic electron transport chain (ETC) can be extended, the overall efficiency of photosynthesis can be improved. The plant nanobionic approach can address this via the introduction of nanoparticles into or in the vicinity of the photosynthetic machinery/chloroplast. We have studied this exceptional nanobionic-mediated capability of two optically active nanostructures and evaluated the impact of their optical properties on plant photosynthesis. Our study revealed that metal (Ag) and core-shell metal nanostructures (AgS) can increase light absorption and improve electron transport through ETC. Both nanostructures were found to have a beneficial effect on the photoluminescence property of the isolated chloroplast. Translocation studies confirmed systemic transportation of the nanomaterial in different plant tissues. The primary growth parameters showed no detrimental effect until 21 days of treatment on . The nano silver/silica core/shell structure (AgS) was found to be more advantageous over nano silver (AgNP) in photon entrapment, light-dependent biochemical reactions, and toxicity parameters. In the future, these nanostructures can enhance photosynthesis by increasing light absorption and resulting in higher assimilatory power generation in the form of ATP and NADPH. This approach may lead to a paradigm shift toward a sustainable method for the configuration of plant chloroplast-based hybrid energy harvesting devices.

摘要

植物光合机制是获取太阳能并将其转化为化学能的主要来源,具有自主自我修复能力。然而,叶绿体光系统的主要局限性在于它只能吸收光谱可见光范围内的光,而这大约仅占入射太阳辐射的50%。此外,光合装置被不到10%的可用阳光饱和。如果能够扩展太阳光吸收能力以及由此产生的光子通过光合电子传递链(ETC)的传输能力,光合作用的整体效率就能得到提高。植物纳米仿生方法可以通过将纳米颗粒引入光合机制/叶绿体内部或其附近来解决这个问题。我们研究了两种光学活性纳米结构的这种特殊的纳米仿生介导能力,并评估了它们的光学性质对植物光合作用的影响。我们的研究表明,金属(Ag)和核壳金属纳米结构(AgS)可以增加光吸收并改善通过ETC的电子传输。发现这两种纳米结构对分离的叶绿体的光致发光特性都有有益影响。转运研究证实了纳米材料在不同植物组织中的系统性运输。在处理21天之前,主要生长参数未显示出有害影响。发现纳米银/二氧化硅核/壳结构(AgS)在光子捕获、光依赖生化反应和毒性参数方面比纳米银(AgNP)更具优势。未来,这些纳米结构可以通过增加光吸收来增强光合作用,并以ATP和NADPH的形式产生更高的同化能力。这种方法可能会导致向基于植物叶绿体的混合能量收集装置配置的可持续方法的范式转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9147/11339815/fcbd05a94cef/ao4c00550_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索