Suppr超能文献

用于增强自然和人工光合作用的有机半导体-生物体界面。

Organic Semiconductor-Organism Interfaces for Augmenting Natural and Artificial Photosynthesis.

机构信息

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

出版信息

Acc Chem Res. 2022 Jan 18;55(2):156-170. doi: 10.1021/acs.accounts.1c00580. Epub 2021 Dec 29.

Abstract

Carbon neutrality is increasingly broadly recognized as a vehicle for climate action and sustainable development. Photosynthesis contributes to maintaining a suitable carbon-oxygen balance for survival and plays an irreplaceable role in mitigating the greenhouse effect. However, the energy conversion efficiency of photosynthesis is only about 1%, far below the theoretical maximum. With the ecological demand of carbon neutrality, it is wise and necessary to further improve the efficiency of photosynthesis. Among methods to do so, the most direct and original one is improving the utilization of photosynthetic pigments to the weak absorption region of the spectrum and thus enhancing the solar energy utilization efficiency.This Account summarizes our group's work on constructing conjugated polymer-photosynthetic organism interfaces to augment photosynthetic efficiency. Side chain modification of ionic groups or preparation of nanoparticles makes conjugated polymers water-soluble and electrically charged, which allows them to bind to the surface of photosynthetic microorganisms through electrostatic interactions or be absorbed by plant roots. Owing to the designable and unparalleled light capture and emission capabilities, funnel-like excitation energy transfer mode, and enviable biocompatibility, organic semiconductor conjugated polymers can be used as "artificial antennas" to make up for the lack of natural antenna pigments and expand the photosynthetically active radiation (PAR) range. With this strategy, we achieved enhancement of the photosynthetic efficiency of a broad range of organisms, including oxygenic photosynthetic organisms, from organelle to prokaryotic cyanobacteria, eukaryotic lower plants, and higher plants, as well as anoxygenic photosynthetic organisms. Unlike conventional semiconductors, conjugated polymers have not only electronic conductivity but also ionic conductivity, which is the main means of bioelectrical signal transduction. Therefore, they are able to act as "electron bridges" to accelerate the electron transfer rate at the material-organism interface. On this basis, we introduced conjugated polymers into artificial photosynthesis systems, including biological photovoltaics and artificial carbon sequestration, to increase energy conversion efficiency. These studies open a new frontier for functional studies of conjugated molecules and provide inspirations for the design of photosynthesis systems in the future.

摘要

碳中和越来越被广泛认为是气候行动和可持续发展的一种手段。光合作用有助于维持适宜的碳氧平衡以保证生存,在缓解温室效应方面发挥着不可替代的作用。然而,光合作用的能量转换效率仅约为 1%,远低于理论最大值。随着碳中和的生态需求,进一步提高光合作用的效率是明智且必要的。在提高光合作用效率的方法中,最直接和原始的方法是提高光合作用色素对光谱弱吸收区域的利用率,从而提高太阳能利用效率。本综述总结了我们小组在构建共轭聚合物-光合生物界面以提高光合作用效率方面的工作。通过离子基团的侧链修饰或纳米粒子的制备,使共轭聚合物具有水溶性和电荷性,使其可以通过静电相互作用与光合微生物表面结合或被植物根系吸收。由于具有可设计性和无与伦比的光捕获和发射能力、漏斗状激发能量转移模式以及令人羡慕的生物相容性,有机半导体共轭聚合物可用作“人工天线”,以弥补天然天线色素的不足并扩展光合作用有效辐射(PAR)范围。通过该策略,我们实现了从细胞器到原核蓝藻、真核低等植物和高等植物以及厌氧光合生物等广泛生物的光合作用效率的提高。与传统半导体不同,共轭聚合物不仅具有电子导电性,而且具有离子导电性,这是生物电信号转导的主要方式。因此,它们可以作为“电子桥”,加速材料-生物界面的电子转移速率。在此基础上,我们将共轭聚合物引入人工光合作用系统,包括生物光伏和人工碳封存,以提高能量转换效率。这些研究为共轭分子的功能研究开辟了一个新的前沿,并为未来光合作用系统的设计提供了启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验