Suppr超能文献

化无为用:单分子转运研究中的单类分类法

Making the Most of Nothing: One-Class Classification for Single-Molecule Transport Studies.

作者信息

Bro-Jørgensen William, Hamill Joseph M, Mezei Gréta, Lawson Brent, Rashid Umar, Halbritter András, Kamenetska Maria, Kaliginedi Veerabhadrarao, Solomon Gemma C

机构信息

Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark.

Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary.

出版信息

ACS Nanosci Au. 2024 Jun 6;4(4):250-262. doi: 10.1021/acsnanoscienceau.4c00015. eCollection 2024 Aug 21.

Abstract

Single-molecule experiments offer a unique means to probe molecular properties of individual molecules-yet they rest upon the successful control of background noise and irrelevant signals. In single-molecule transport studies, large amounts of data that probe a wide range of physical and chemical behaviors are often generated. However, due to the stochasticity of these experiments, a substantial fraction of the data may consist of blank traces where no molecular signal is evident. One-class (OC) classification is a machine learning technique to identify a specific class in a data set that potentially consists of a wide variety of classes. Here, we examine the utility of two different types of OC classification models on four diverse data sets from three different laboratories. Two of these data sets were measured at cryogenic temperatures and two at room temperature. By training the models solely on traces from a blank experiment, we demonstrate the efficacy of OC classification as a powerful and reliable method for filtering out blank traces from a molecular experiment in all four data sets. On a labeled 4,4'-bipyridine data set measured at 4.2 K, we achieve an accuracy of 96.9 ± 0.3 and an area under the receiver operating characteristic curve of 99.5 ± 0.3 as validated over a fivefold cross-validation. Given the wide range of physical and chemical properties that can be probed in single-molecule experiments, the successful application of OC classification to filter out blank traces is a major step forward in our ability to understand and manipulate molecular properties.

摘要

单分子实验提供了一种独特的手段来探测单个分子的分子特性——然而,它们依赖于对背景噪声和无关信号的成功控制。在单分子输运研究中,常常会生成大量探测广泛物理和化学行为的数据。然而,由于这些实验的随机性,相当一部分数据可能由无明显分子信号的空白轨迹组成。一类(OC)分类是一种机器学习技术,用于在可能由多种类组成的数据集中识别特定类。在这里,我们研究了两种不同类型的OC分类模型在来自三个不同实验室的四个不同数据集上的效用。其中两个数据集是在低温下测量的,另外两个是在室温下测量的。通过仅在空白实验的轨迹上训练模型,我们证明了OC分类作为一种强大且可靠的方法,可用于从所有四个数据集中滤除分子实验中的空白轨迹。在一个在4.2 K下测量的标记4,4'-联吡啶数据集上,经过五重交叉验证,我们实现了96.9±0.3的准确率和99.5±0.3的接收器操作特征曲线下面积。鉴于在单分子实验中可以探测的广泛物理和化学性质,OC分类成功应用于滤除空白轨迹是我们理解和操纵分子性质能力的一个重大进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d43a/11342344/6c52615ab9b1/ng4c00015_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验