Quatieri Thomas F, Wang Jing, Williamson James R, DeLaura Richard, Talkar Tanya, Solomon Nancy P, Kuchinsky Stefanie E, Eitel Megan, Brickell Tracey, Lippa Sara, Heaton Kristin J, Brungart Douglas S, French Louis, Lange Rael, Palmer Jeffrey, Reynolds Hayley
MIT Lincoln Laboratory (MIT LL) Lexington MA 02421 USA.
Speech and Hearing Bioscience and Technology ProgramHarvard Medical School Cambridge MA 02115 USA.
IEEE Open J Eng Med Biol. 2023 Jun 13;5:621-626. doi: 10.1109/OJEMB.2023.3284798. eCollection 2024.
This paper introduces an automated post-traumatic stress disorder (PTSD) screening tool that could potentially be used as a self-assessment or inserted into routine medical visits to aid in PTSD diagnosis and treatment. With an emotion estimation algorithm providing arousal (excited to calm) and valence (pleasure to displeasure) levels through discourse, we select regions of the acoustic signal that are most salient for PTSD detection. Our algorithm was tested on a subset of data from the DVBIC-TBICoE TBI Study, which contains PTSD Check List Civilian (PCL-C) assessment scores. Speech from low-arousal and positive-valence regions provide the highest discrimination for PTSD. Our model achieved an AUC (area under the curve) of 0.80 in detecting PCL-C ratings, outperforming models with no emotion filtering (AUC = 0.68). This result suggests that emotion drives the selection of the most salient temporal regions of an audio recording for PTSD detection.
本文介绍了一种自动化的创伤后应激障碍(PTSD)筛查工具,该工具可能用作自我评估,或嵌入常规医疗问诊中,以辅助PTSD的诊断和治疗。通过一种情感估计算法,该算法可通过话语提供唤醒度(从兴奋到平静)和效价(从愉悦到不悦)水平,我们选择了声学信号中对PTSD检测最显著的区域。我们的算法在DVBIC-TBICoE创伤性脑损伤研究的一部分数据上进行了测试,该数据包含创伤后应激障碍检查表平民版(PCL-C)评估分数。来自低唤醒度和正效价区域的语音对PTSD具有最高的辨别力。我们的模型在检测PCL-C评分时的曲线下面积(AUC)达到了0.80,优于未进行情感过滤的模型(AUC = 0.68)。这一结果表明,情感驱动了为PTSD检测而选择音频记录中最显著的时间区域。