Suppr超能文献

基于语音的美国退伍军人创伤后应激障碍标志物。

Speech-based markers for posttraumatic stress disorder in US veterans.

机构信息

Department of Psychiatry, New York University School of Medicine, New York, New York.

Steven and Alexandra Cohen Veterans Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury, New York, New York.

出版信息

Depress Anxiety. 2019 Jul;36(7):607-616. doi: 10.1002/da.22890. Epub 2019 Apr 22.

Abstract

BACKGROUND

The diagnosis of posttraumatic stress disorder (PTSD) is usually based on clinical interviews or self-report measures. Both approaches are subject to under- and over-reporting of symptoms. An objective test is lacking. We have developed a classifier of PTSD based on objective speech-marker features that discriminate PTSD cases from controls.

METHODS

Speech samples were obtained from warzone-exposed veterans, 52 cases with PTSD and 77 controls, assessed with the Clinician-Administered PTSD Scale. Individuals with major depressive disorder (MDD) were excluded. Audio recordings of clinical interviews were used to obtain 40,526 speech features which were input to a random forest (RF) algorithm.

RESULTS

The selected RF used 18 speech features and the receiver operating characteristic curve had an area under the curve (AUC) of 0.954. At a probability of PTSD cut point of 0.423, Youden's index was 0.787, and overall correct classification rate was 89.1%. The probability of PTSD was higher for markers that indicated slower, more monotonous speech, less change in tonality, and less activation. Depression symptoms, alcohol use disorder, and TBI did not meet statistical tests to be considered confounders.

CONCLUSIONS

This study demonstrates that a speech-based algorithm can objectively differentiate PTSD cases from controls. The RF classifier had a high AUC. Further validation in an independent sample and appraisal of the classifier to identify those with MDD only compared with those with PTSD comorbid with MDD is required.

摘要

背景

创伤后应激障碍(PTSD)的诊断通常基于临床访谈或自我报告的测量方法。这两种方法都存在症状报告不足和过度报告的问题。目前缺乏客观的测试方法。我们已经开发了一种基于 PTSD 客观言语标记特征的分类器,可以将 PTSD 病例与对照区分开来。

方法

从战区暴露的退伍军人中获取了语音样本,共有 52 例 PTSD 病例和 77 例对照,使用临床医生管理的 PTSD 量表进行评估。排除了患有重度抑郁症(MDD)的个体。使用临床访谈的音频记录来获取 40526 个语音特征,并将其输入随机森林(RF)算法。

结果

所选的 RF 使用了 18 个语音特征,接收者操作特征曲线的曲线下面积(AUC)为 0.954。在 PTSD 概率切点为 0.423 时,Youden 的指数为 0.787,整体正确分类率为 89.1%。表明语速较慢、语调较单调、音调变化较小、活跃度较低的标记物的 PTSD 概率更高。抑郁症状、酒精使用障碍和 TBI 没有达到统计学检验标准,不能被认为是混杂因素。

结论

这项研究表明,基于语音的算法可以客观地区分 PTSD 病例和对照。RF 分类器具有较高的 AUC。需要在独立样本中进一步验证,并评估该分类器以识别仅患有 MDD 的个体与患有 PTSD 合并 MDD 的个体。

相似文献

8
Development and application of a diagnostic algorithm for posttraumatic stress disorder.创伤后应激障碍诊断算法的开发与应用。
Psychiatry Res. 2015 Jan 30;231(1):1-7. doi: 10.1016/j.pscychresns.2014.11.007. Epub 2014 Nov 15.

引用本文的文献

本文引用的文献

2
Post-Traumatic Stress Disorder.创伤后应激障碍
N Engl J Med. 2017 Jun 22;376(25):2459-2469. doi: 10.1056/NEJMra1612499.
5
PTSD: from neurobiology to pharmacological treatments.创伤后应激障碍:从神经生物学到药物治疗
Eur J Psychotraumatol. 2016 Nov 8;7:31858. doi: 10.3402/ejpt.v7.31858. eCollection 2016.
6
ECOLOGICALLY VALID LONG-TERM MOOD MONITORING OF INDIVIDUALS WITH BIPOLAR DISORDER USING SPEECH.使用语音对双相情感障碍个体进行生态有效长期情绪监测。
Proc IEEE Int Conf Acoust Speech Signal Process. 2014 May;2014:4858-4862. doi: 10.1109/ICASSP.2014.6854525. Epub 2014 Jul 14.
8
Detecting Depression Severity from Vocal Prosody.从嗓音韵律中检测抑郁症严重程度。
IEEE Trans Affect Comput. 2013 Apr-Jun;4(2):142-150. doi: 10.1109/T-AFFC.2012.38. Epub 2013 Jul 11.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验