Suppr超能文献

胶质母细胞瘤-免疫动力学模型中虚拟小鼠队列联合免疫疗法的最优控制

Optimal control of combination immunotherapy for a virtual murine cohort in a glioblastoma-immune dynamics model.

作者信息

Anderson Hannah G, Takacs Gregory P, Harrison Jeffrey K, Rong Libin, Stepien Tracy L

机构信息

Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, 32601, FL, USA.

Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, 32610, FL, USA.

出版信息

bioRxiv. 2024 Aug 12:2024.04.29.591725. doi: 10.1101/2024.04.29.591725.

Abstract

The immune checkpoint inhibitor anti-PD-1, commonly used in cancer immunotherapy, has not been successful as a monotherapy for the highly aggressive brain cancer glioblastoma. However, when used in conjunction with a CC-chemokine receptor-2 (CCR2) antagonist, anti-PD-1 has shown efficacy in preclinical studies. In this paper, we aim to optimize treatment regimens for this combination immunotherapy using optimal control theory. We extend a treatment-free glioblastoma-immune dynamics ODE model to include interventions with anti-PD-1 and the CCR2 antagonist. An optimized regimen increases the survival of an average mouse from 32 days post-tumor implantation without treatment to 111 days with treatment. We scale this approach to a virtual murine cohort to evaluate mortality and quality of life concerns during treatment, and predict survival, tumor recurrence, or death after treatment. A parameter identifiability analysis identifies five parameters suitable for personalizing treatment within the virtual cohort. Sampling from these five practically identifiable parameters for the virtual murine cohort reveals that personalized, optimized regimens enhance survival: 84% of the virtual mice survive to day 100, compared to 60% survival in a previously studied experimental regimen. Subjects with high tumor growth rates and low T cell kill rates are identified as more likely to die during and after treatment due to their compromised immune systems and more aggressive tumors. Notably, the MDSC death rate emerges as a long-term predictor of either disease-free survival or death.

摘要

免疫检查点抑制剂抗程序性死亡蛋白1(anti-PD-1)常用于癌症免疫治疗,但作为高度侵袭性脑癌胶质母细胞瘤的单一疗法却未取得成功。然而,在与C-C趋化因子受体2(CCR2)拮抗剂联合使用时,anti-PD-1在临床前研究中已显示出疗效。在本文中,我们旨在运用最优控制理论优化这种联合免疫治疗的方案。我们扩展了一个无治疗的胶质母细胞瘤-免疫动力学常微分方程模型,以纳入anti-PD-1和CCR2拮抗剂的干预措施。优化后的方案将平均小鼠在肿瘤植入后未经治疗的存活时间从32天延长至治疗后的111天。我们将这种方法扩展到一个虚拟小鼠队列,以评估治疗期间的死亡率和生活质量问题,并预测治疗后的存活、肿瘤复发或死亡情况。参数可识别性分析确定了五个适合在虚拟队列中进行个性化治疗的参数。从这五个实际可识别的参数中对虚拟小鼠队列进行抽样显示,个性化的优化方案可提高存活率:84%的虚拟小鼠存活至第100天,而在先前研究的实验方案中这一比例为60%。肿瘤生长速率高且T细胞杀伤率低的受试者被确定为在治疗期间及之后更有可能死亡,原因是他们的免疫系统受损且肿瘤更具侵袭性。值得注意的是,髓系来源的抑制细胞(MDSC)死亡率成为无病生存或死亡的长期预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e20e/11343105/395b72389d62/nihpp-2024.04.29.591725v2-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验