Suppr超能文献

类脑边界所有权信号支持对自然视频的预测。

Brain-like border ownership signals support prediction of natural videos.

作者信息

Ye Zeyuan, Wessel Ralf, Franken Tom P

机构信息

Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA.

Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

bioRxiv. 2024 Aug 12:2024.08.11.607040. doi: 10.1101/2024.08.11.607040.

Abstract

To make sense of visual scenes, the brain must segment foreground from background. This is thought to be facilitated by neurons in the primate visual system that encode border ownership (BOS), i.e. whether a local border is part of an object on one or the other side of the border. It is unclear how these signals emerge in neural networks without a teaching signal of what is foreground and background. In this study, we investigated whether BOS signals exist in PredNet, a self-supervised artificial neural network trained to predict the next image frame of natural video sequences. We found that a significant number of units in PredNet are selective for BOS. Moreover these units share several other properties with the BOS neurons in the brain, including robustness to scene variations that constitute common object transformations in natural videos, and hysteresis of BOS signals. Finally, we performed ablation experiments and found that BOS units contribute more to prediction than non-BOS units for videos with moving objects. Our findings indicate that BOS units are especially useful to predict future input in natural videos, even when networks are not required to segment foreground from background. This suggests that BOS neurons in the brain might be the result of evolutionary or developmental pressure to predict future input in natural, complex dynamic visual environments.

摘要

为了理解视觉场景,大脑必须将前景与背景区分开来。灵长类视觉系统中编码边界所有权(BOS)的神经元被认为有助于这一过程,即局部边界是边界一侧还是另一侧物体的一部分。目前尚不清楚在没有前景和背景教学信号的神经网络中,这些信号是如何出现的。在这项研究中,我们调查了PredNet(一种经过训练以预测自然视频序列下一图像帧的自监督人工神经网络)中是否存在BOS信号。我们发现PredNet中有大量单元对BOS具有选择性。此外,这些单元与大脑中的BOS神经元共享其他几个特性,包括对构成自然视频中常见物体变换的场景变化的鲁棒性以及BOS信号的滞后现象。最后,我们进行了消融实验,发现对于有移动物体的视频,BOS单元比非BOS单元对预测的贡献更大。我们的研究结果表明,即使网络不需要将前景与背景区分开来,BOS单元对于预测自然视频中的未来输入也特别有用。这表明大脑中的BOS神经元可能是在自然、复杂动态视觉环境中预测未来输入的进化或发育压力的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/11343161/0a1a7887ae76/nihpp-2024.08.11.607040v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验