Koo Byoung-Mo, Todor Horia, Sun Jiawei, van Gestel Jordi, Hawkins John S, Hearne Cameron C, Banta Amy B, Huang Kerwyn Casey, Peters Jason M, Gross Carol A
Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.
bioRxiv. 2024 Aug 16:2024.08.14.608006. doi: 10.1101/2024.08.14.608006.
Understanding bacterial gene function remains a major biological challenge. Double-mutant genetic interaction (GI) analysis addresses this challenge by uncovering the functional partners of targeted genes, allowing us to associate genes of unknown function with novel pathways and unravel connections between well-studied pathways, but is difficult to implement at the genome-scale. Here, we develop and use double-CRISPRi to systematically quantify genetic interactions at scale in the envelope, including essential genes. We discover > 1000 known and novel genetic interactions. Our analysis pipeline and experimental follow-ups reveal the distinct roles of paralogous genes such as the and actin homologs, and identify new genes involved in the well-studied process of cell division. Overall, our study provides valuable insights into gene function and demonstrates the utility of double-CRISPRi for high-throughput dissection of bacterial gene networks, providing a blueprint for future studies in diverse bacterial species.
了解细菌基因功能仍然是一项重大的生物学挑战。双突变基因相互作用(GI)分析通过揭示目标基因的功能伙伴来应对这一挑战,使我们能够将功能未知的基因与新途径联系起来,并揭示已深入研究的途径之间的联系,但在基因组规模上难以实施。在这里,我们开发并使用双CRISPRi来系统地大规模量化包膜中的基因相互作用,包括必需基因。我们发现了1000多个已知和新的基因相互作用。我们的分析流程和实验后续揭示了同源基因(如α和β肌动蛋白同源物)的不同作用,并确定了参与细胞分裂这一深入研究过程的新基因。总体而言,我们的研究为基因功能提供了有价值的见解,并证明了双CRISPRi在高通量剖析细菌基因网络方面的效用,为未来在不同细菌物种中的研究提供了蓝图。