Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Zhongda Hospital, Medical School of Southeast University, Nanjing, China.
Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
J Med Virol. 2024 Aug;96(8):e29882. doi: 10.1002/jmv.29882.
Establishing reliable noninvasive tools to precisely diagnose clinically significant liver fibrosis (SF, ≥F2) remains an unmet need. We aimed to build a combined radiomics-clinic (CoRC) model for triaging SF and explore the additive value of the CoRC model to transient elastography-based liver stiffness measurement (FibroScan, TE-LSM). This retrospective study recruited 595 patients with biopsy-proven liver fibrosis at two centers between January 2015 and December 2021. At Center 1, the patients before December 2018 were randomly split into training (276) and internal test (118) sets, the remaining were time-independent as a temporal test set (96). Another data set (105) from Center 2 was collected for external testing. Radiomics scores were built with selected features from Deep learning-based (ResUNet) automated whole liver segmentations on MRI (T2FS and delayed enhanced-T1WI). The CoRC model incorporated radiomics scores and relevant clinical variables with logistic regression, comparing routine approaches. Diagnostic performance was evaluated by the area under the receiver operating characteristic curve (AUC). The additive value of the CoRC model to TE-LSM was investigated, considering necroinflammation. The CoRC model achieved AUCs of 0.79 (0.70, 0.86), 0.82 (0.73, 0.89), and 0.81 (0.72-0.91), outperformed FIB-4, APRI (all p < 0.05) in the internal, temporal, and external test sets and maintained the discriminatory power in G0-1 subgroups (AUCs range, 0.85-0.86; all p < 0.05). The AUCs of joint CoRC-LSM model were 0.86 (0.79-0.94), and 0.81 (0.72-0.90) in the internal and temporal sets (p = 0.01). The CoRC model was useful for triaging SF, and may add value to TE-LSM.
建立可靠的无创工具,以准确诊断临床上显著的肝纤维化(SF,≥F2)仍然是一个未满足的需求。我们旨在建立一个联合放射组学-临床(CoRC)模型来对 SF 进行分类,并探讨 CoRC 模型对基于瞬时弹性成像的肝硬度测量(FibroScan,TE-LSM)的附加价值。这项回顾性研究在 2015 年 1 月至 2021 年 12 月期间在两个中心招募了 595 名经活检证实的肝纤维化患者。在中心 1,2018 年 12 月之前的患者被随机分为训练(276 例)和内部测试(118 例)集,其余患者作为时间独立的时间测试集(96 例)。另一个来自中心 2 的数据集(105 例)被收集用于外部测试。放射组学评分是基于深度学习(ResUNet)自动全肝分段的 MRI(T2FS 和延迟增强-T1WI)上选择的特征构建的。CoRC 模型将放射组学评分和相关临床变量与逻辑回归相结合,与常规方法进行比较。通过接受者操作特征曲线下的面积(AUC)评估诊断性能。考虑到坏死性炎症,研究了 CoRC 模型对 TE-LSM 的附加价值。CoRC 模型在内部、时间和外部测试集中的 AUC 分别为 0.79(0.70,0.86)、0.82(0.73,0.89)和 0.81(0.72-0.91),优于 FIB-4 和 APRI(均 p<0.05)。在 G0-1 亚组中,CoRC 模型保持了良好的鉴别能力(AUC 范围,0.85-0.86;均 p<0.05)。在内部和时间集,CoRC-LSM 联合模型的 AUC 分别为 0.86(0.79-0.94)和 0.81(0.72-0.90)(p=0.01)。CoRC 模型可用于 SF 的分类,并可能为 TE-LSM 增加价值。