Suppr超能文献

使用钆塞酸增强 MRI 的深度学习分析实现肝纤维化的全自动预测。

Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid-enhanced MRI.

机构信息

BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.

出版信息

Eur Radiol. 2021 Jun;31(6):3805-3814. doi: 10.1007/s00330-020-07475-4. Epub 2020 Nov 17.

Abstract

OBJECTIVES

To (1) develop a fully automated deep learning (DL) algorithm based on gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and (2) compare the diagnostic performance of DL vs. MR elastography (MRE) for noninvasive staging of liver fibrosis.

METHODS

This single-center retrospective study included 355 patients (M/F 238/117, mean age 60 years; training, n = 178; validation, n = 123; test, n = 54) who underwent gadoxetic acid-enhanced abdominal MRI, including HBP and MRE, and pathological evaluation of the liver within 1 year of MRI. Cropped liver HBP images from a custom-written fully automated liver segmentation were used as input for DL. A transfer learning approach based on the ImageNet VGG16 model was used. Different DL models were built for the prediction of fibrosis stages F1-4, F2-4, F3-4, and F4. ROC analysis was performed to evaluate the performance of DL in training, validation, and test sets and of MRE liver stiffness in the test set.

RESULTS

AUC values of DL were 0.99/0.70/0.77 (F1-4), 0.92/0.71/0.91 (F2-4), 0.91/0.78/0.90 (F3-4), and 0.98/0.83/0.85 (F4) for training/validation/test sets, respectively. The AUCs of MRE liver stiffness in the test set were 0.86 (F1-4), 0.87 (F2-4), 0.92 (F3-4), and 0.86 (F4). AUCs of MRE and DL were not significantly different for any of the fibrosis stages (p > 0.134).

CONCLUSIONS

The fully automated DL models based on HBP gadoxetic acid MRI showed good-to-excellent diagnostic performance for staging of liver fibrosis, with similar diagnostic performance to MRE. After validation in independent sets, the DL algorithm may allow for noninvasive liver fibrosis assessment without the need for additional MRI hardware.

KEY POINTS

• The developed deep learning algorithm, based on routine standard-of-care gadoxetic acid-enhanced MRI data, showed good-to-excellent diagnostic performance for noninvasive staging of liver fibrosis. • The diagnostic performance of the deep learning algorithm was equivalent to that of MR elastography in a separate test set.

摘要

目的

(1)开发一种基于钆塞酸增强肝胆期(HBP)MRI 的全自动深度学习(DL)算法,(2)比较 DL 与磁共振弹性成像(MRE)在非侵入性肝纤维化分期中的诊断性能。

方法

这项单中心回顾性研究纳入了 355 名患者(男/女 238/117 例,平均年龄 60 岁;训练集,n = 178;验证集,n = 123;测试集,n = 54),他们在 MRI 检查后 1 年内接受了包括 HBP 和 MRE 在内的钆塞酸增强腹部 MRI 检查和肝脏的病理评估。从自定义的全自动肝脏分割中裁剪出的 HBP 图像被用作 DL 的输入。使用基于 ImageNet VGG16 模型的迁移学习方法。为预测纤维化分期 F1-4、F2-4、F3-4 和 F4 构建了不同的 DL 模型。在训练集、验证集和测试集上评估了 DL 和 MRE 肝硬度的 ROC 分析,以及在测试集上的性能。

结果

在训练集/验证集/测试集上,DL 的 AUC 值分别为 0.99/0.70/0.77(F1-4)、0.92/0.71/0.91(F2-4)、0.91/0.78/0.90(F3-4)和 0.98/0.83/0.85(F4)。MRE 肝硬度在测试集上的 AUC 值分别为 0.86(F1-4)、0.87(F2-4)、0.92(F3-4)和 0.86(F4)。对于任何纤维化分期,MRE 和 DL 的 AUC 值均无显著差异(p > 0.134)。

结论

基于钆塞酸 HBP MRI 的全自动 DL 模型对肝纤维化分期具有良好到优秀的诊断性能,与 MRE 具有相似的诊断性能。在独立数据集验证后,该 DL 算法可用于无需额外 MRI 硬件的非侵入性肝纤维化评估。

关键点

(1)该研究开发的基于常规标准护理钆塞酸增强 MRI 数据的深度学习算法,对肝纤维化的无创分期具有良好到优秀的诊断性能。(2)在单独的测试集中,深度学习算法的诊断性能与磁共振弹性成像相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验