Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany.
DKFZ German Cancer Research Center, Heidelberg, Germany.
Eur Radiol Exp. 2024 Aug 26;8(1):97. doi: 10.1186/s41747-024-00503-8.
Magnetic resonance neurography (MRN) is increasingly used as a diagnostic tool for peripheral neuropathies. Quantitative measures enhance MRN interpretation but require nerve segmentation which is time-consuming and error-prone and has not become clinical routine. In this study, we applied neural networks for the automated segmentation of peripheral nerves.
A neural segmentation network was trained to segment the sciatic nerve and its proximal branches on the MRN scans of the right and left upper leg of 35 healthy individuals, resulting in 70 training examples, via 5-fold cross-validation (CV). The model performance was evaluated on an independent test set of one-sided MRN scans of 60 healthy individuals.
Mean Dice similarity coefficient (DSC) in CV was 0.892 (95% confidence interval [CI]: 0.888-0.897) with a mean Jaccard index (JI) of 0.806 (95% CI: 0.799-0.814) and mean Hausdorff distance (HD) of 2.146 (95% CI: 2.184-2.208). For the independent test set, DSC and JI were lower while HD was higher, with a mean DSC of 0.789 (95% CI: 0.760-0.815), mean JI of 0.672 (95% CI: 0.642-0.699), and mean HD of 2.118 (95% CI: 2.047-2.190).
The deep learning-based segmentation model showed a good performance for the task of nerve segmentation. Future work will focus on extending training data and including individuals with peripheral neuropathies in training to enable advanced peripheral nerve disease characterization.
The results will serve as a baseline to build upon while developing an automated quantitative MRN feature analysis framework for application in routine reading of MRN examinations.
Quantitative measures enhance MRN interpretation, requiring complex and challenging nerve segmentation. We present a deep learning-based segmentation model with good performance. Our results may serve as a baseline for clinical automated quantitative MRN segmentation.
磁共振神经成像(MRN)越来越多地被用作周围神经病变的诊断工具。定量测量方法增强了 MRN 的解读,但需要对神经进行分割,这既耗时又容易出错,尚未成为临床常规。在这项研究中,我们应用神经网络对周围神经进行自动分割。
通过五折交叉验证(CV),对 35 名健康个体的右大腿和左大腿的 MRN 扫描进行训练,训练了一个神经分割网络,对坐骨神经及其近端分支进行分割,共产生 70 个训练样本。通过对 60 名健康个体单侧 MRN 扫描的独立测试集评估模型性能。
CV 中的平均 Dice 相似系数(DSC)为 0.892(95%置信区间[CI]:0.888-0.897),平均 Jaccard 指数(JI)为 0.806(95%CI:0.799-0.814),平均 Hausdorff 距离(HD)为 2.146(95%CI:2.184-2.208)。对于独立测试集,DSC 和 JI 较低,而 HD 较高,平均 DSC 为 0.789(95%CI:0.760-0.815),平均 JI 为 0.672(95%CI:0.642-0.699),平均 HD 为 2.118(95%CI:2.047-2.190)。
基于深度学习的分割模型在神经分割任务中表现良好。未来的工作将集中于扩展训练数据,并在训练中纳入患有周围神经病变的个体,以实现对周围神经疾病的高级特征描述。
研究结果将作为开发用于常规 MRN 检查阅读的自动定量 MRN 特征分析框架的基础。
定量测量方法增强了 MRN 的解读,需要对神经进行复杂且具有挑战性的分割。我们提出了一种性能良好的基于深度学习的分割模型。我们的结果可能为临床自动定量 MRN 分割提供一个基线。