Suppr超能文献

基于磁共振神经造影的周围神经分割:一种全自动的深度学习方法。

Segmentation of Peripheral Nerves From Magnetic Resonance Neurography: A Fully-Automatic, Deep Learning-Based Approach.

作者信息

Balsiger Fabian, Steindel Carolin, Arn Mirjam, Wagner Benedikt, Grunder Lorenz, El-Koussy Marwan, Valenzuela Waldo, Reyes Mauricio, Scheidegger Olivier

机构信息

Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.

Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

出版信息

Front Neurol. 2018 Sep 19;9:777. doi: 10.3389/fneur.2018.00777. eCollection 2018.

Abstract

Diagnosis of peripheral neuropathies relies on neurological examinations, electrodiagnostic studies, and since recently magnetic resonance neurography (MRN). The aim of this study was to develop and evaluate a fully-automatic segmentation method of peripheral nerves of the thigh. T2-weighted sequences without fat suppression acquired on a 3 T MR scanner were retrospectively analyzed in 10 healthy volunteers and 42 patients suffering from clinically and electrophysiologically diagnosed sciatic neuropathy. A fully-convolutional neural network was developed to segment the MRN images into peripheral nerve and background tissues. The performance of the method was compared to manual inter-rater segmentation variability. The proposed method yielded Dice coefficients of 0.859 ± 0.061 and 0.719 ± 0.128, Hausdorff distances of 13.9 ± 26.6 and 12.4 ± 12.1 mm, and volumetric similarities of 0.930 ± 0.054 and 0.897 ± 0.109, for the healthy volunteer and patient cohorts, respectively. The complete segmentation process requires less than one second, which is a significant decrease to manual segmentation with an average duration of 19 ± 8 min. Considering cross-sectional area or signal intensity of the segmented nerves, focal and extended lesions might be detected. Such analyses could be used as biomarker for lesion burden, or serve as volume of interest for further quantitative MRN techniques. We demonstrated that fully-automatic segmentation of healthy and neuropathic sciatic nerves can be performed from standard MRN images with good accuracy and in a clinically feasible time.

摘要

周围神经病变的诊断依赖于神经学检查、电诊断研究,以及近年来的磁共振神经成像(MRN)。本研究的目的是开发并评估一种大腿周围神经的全自动分割方法。回顾性分析了10名健康志愿者和42名临床及电生理诊断为坐骨神经病变患者在3T MR扫描仪上采集的未进行脂肪抑制的T2加权序列。开发了一种全卷积神经网络,将MRN图像分割为周围神经和背景组织。将该方法的性能与手动评分者间分割的变异性进行了比较。对于健康志愿者和患者队列,所提出的方法分别产生了0.859±0.061和0.719±0.128的Dice系数、13.9±26.6和12.4±12.1毫米的豪斯多夫距离,以及0.930±0.054和0.897±0.109的体积相似性。完整的分割过程所需时间不到一秒,与平均持续时间为19±8分钟的手动分割相比有显著减少。考虑分割神经的横截面积或信号强度,可能检测到局灶性和扩展性病变。此类分析可作为病变负担的生物标志物,或作为进一步定量MRN技术的感兴趣体积。我们证明,从标准MRN图像可以以良好的准确性且在临床可行的时间内对健康和病变的坐骨神经进行全自动分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验