Suppr超能文献

基于堆叠深度矩阵分解的多视图多注意力图学习用于环状RNA-药物敏感性关联识别

Multi-View Multiattention Graph Learning With Stack Deep Matrix Factorization for circRNA-Drug Sensitivity Association Identification.

作者信息

Ai Ning, Yuan Haoliang, Liang Yong, Lu Shanghui, Ouyang Dong, Lai Qi Hong, Lai Loi Lei

出版信息

IEEE J Biomed Health Inform. 2024 Dec;28(12):7670-7682. doi: 10.1109/JBHI.2024.3431693. Epub 2024 Dec 5.

Abstract

Identifying circular RNA (circRNA)-drug sensitivity association (CDsA) is crucial for advancing drug development. As conducting traditional wet experiments for determining CDsA is costly and inefficient, calculation methods have already proven to be a valid approach to cope with this problem. However, there exists limited research addressing the prediction of the CDsA prediction problem, and certain discrepancies persist, particularly concerning false-negative associations. As a consequence, we present a multi-view framework, called MAGSDMF, for identifying latent CDsA. Firstly, MAGSDMF applies ultiple ttention mechanisms and raph learning methods to dynamically extract features and strengthen the features of inside and across multi-similarity networks of circRNA and drug. Secondly, the tack eep atrix Factorization (SDMF) is devised to directly extract features from CDsAs. We consider multi-similarity networks with the original CDsAs as multi-view information. Thirdly, MAGSDMF utilizes a multi-attention channel mechanism to integrate these features for the purpose of reconstructing CDsA. Finally, MAGSDMF performs another DMF based on the reconstruction to identify the latent CDsAs. Simultaneously, contrastive learning (CL) is implemented to enhance the generalization capability of MAGSDMF and oversee the learning process of the underlying links prediction task. In comparative experiments, MAGSDMF achieves superior performance on two datasets with AUC values of 0.9743 and 0.9739 based on 5-fold cross-validation. Moreover, in case studies, the achievements further validate the identification reliability of MAGSDMF.

摘要

识别环状RNA(circRNA)-药物敏感性关联(CDsA)对于推进药物开发至关重要。由于进行传统的湿实验来确定CDsA成本高昂且效率低下,计算方法已被证明是解决这一问题的有效途径。然而,针对CDsA预测问题的研究有限,并且存在一些差异,特别是关于假阴性关联。因此,我们提出了一个名为MAGSDMF的多视图框架,用于识别潜在的CDsA。首先,MAGSDMF应用多种注意力机制和图学习方法来动态提取特征,并增强circRNA和药物的多相似性网络内部和跨网络的特征。其次,设计了张量保持矩阵分解(SDMF)以直接从CDsA中提取特征。我们将具有原始CDsA的多相似性网络视为多视图信息。第三,MAGSDMF利用多注意力通道机制来整合这些特征以重建CDsA。最后,MAGSDMF基于重建执行另一次DMF以识别潜在的CDsA。同时,实施对比学习(CL)以增强MAGSDMF的泛化能力并监督潜在链接预测任务的学习过程。在对比实验中,基于5折交叉验证,MAGSDMF在两个数据集上取得了优异的性能,AUC值分别为0.9743和0.9739。此外,在案例研究中,这些成果进一步验证了MAGSDMF识别的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验