Suppr超能文献

可解释的多实例异构图网络学习建模环状RNA-药物敏感性关联预测。

Interpretable multi-instance heterogeneous graph network learning modelling CircRNA-drug sensitivity association prediction.

作者信息

Niu Mengting, Wang Chunyu, Chen Yaojia, Zou Quan, Luo Ximei

机构信息

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.

Macao Polytechnic University, Gomes Street, Macau Peninsula, Macau, 999078, China.

出版信息

BMC Biol. 2025 May 14;23(1):131. doi: 10.1186/s12915-025-02223-w.

Abstract

BACKGROUND

Different expression levels of circular RNAs (circRNAs) affect the sensitivity of human cells to drugs, thus producing different responses to the therapeutic effects of drugs. Using traditional biomedical experiments to discover and confirm sensitivity relationships is not only time-consuming but also costly. Therefore, developing an effective method to accurately predict new associations between circRNAs and drug sensitivity is crucial and urgent. Therefore, we constructed a heterogeneous graph network MiGNN2CDS on the basis of multi-instance learning (MIL).

RESULTS

We first extracted similar features of circRNAs and drugs and the structural features of drugs to construct a heterogeneous network. To learn the deep embedding features of the heterogeneous network, we designed a heterogeneous graph convolutional network (GCN) architecture. By introducing instance learning, we subsequently designed a pseudo-metapath instance generator and a bidirectional translation embedding projector BiTrans to learn the metapath-level representation of circRNA-drug pairs. Finally, an interpretable multiscale attention network joint predictor was designed to achieve accurate prediction and interpretable analysis of circRNA-drug sensitivity associations.

CONCLUSIONS

MiGNN2CDS achieves better prediction accuracy than many state-of-the-art models do. Case studies show that MiGNN2CDS can effectively predict unknown associations, and the model interpretability of MiGNN2CDS is verified by high-confidence meta-path analysis. The code and data are available at https://github.com/nmt315320/MiGNN2CDS.git .

摘要

背景

环状RNA(circRNA)的不同表达水平会影响人类细胞对药物的敏感性,从而对药物治疗效果产生不同反应。利用传统生物医学实验来发现和确认敏感性关系不仅耗时,而且成本高昂。因此,开发一种有效方法来准确预测circRNA与药物敏感性之间的新关联至关重要且迫在眉睫。因此,我们基于多实例学习(MIL)构建了一个异构图网络MiGNN2CDS。

结果

我们首先提取circRNA和药物的相似特征以及药物的结构特征来构建异质网络。为了学习异质网络的深度嵌入特征,我们设计了一种异构图卷积网络(GCN)架构。通过引入实例学习,我们随后设计了一个伪元路径实例生成器和一个双向翻译嵌入投影仪BiTrans来学习circRNA-药物对的元路径级表示。最后,设计了一个可解释的多尺度注意力网络联合预测器,以实现对circRNA-药物敏感性关联的准确预测和可解释分析。

结论

MiGNN2CDS比许多现有先进模型具有更好的预测准确性。案例研究表明,MiGNN2CDS可以有效预测未知关联,并且通过高置信度元路径分析验证了MiGNN2CDS的模型可解释性。代码和数据可在https://github.com/nmt315320/MiGNN2CDS.git获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b7b/12079948/8813239541b1/12915_2025_2223_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验