Suppr超能文献

优化集成深度学习在学生成绩预测分析中的应用。

Optimized ensemble deep learning for predictive analysis of student achievement.

机构信息

Student Affairs Department, Institute of Science and Technology, Luoyang, Henan Province, China.

Department of Education, Keimyung University, Daegu, Korea.

出版信息

PLoS One. 2024 Aug 26;19(8):e0309141. doi: 10.1371/journal.pone.0309141. eCollection 2024.

Abstract

Education is essential for individuals to lead fulfilling lives and attain greatness by enhancing their value. It improves self-assurance and enables individuals to navigate the complexities of modern society effectively. Despite the obstacles it faces, education continues to develop. The objective of numerous pedagogical approaches is to enhance academic performance. The development of technology, especially artificial intelligence, has caused a significant change in learning. This has made instructional materials available anytime and wherever easily accessible. Higher education institutions are adding technology to conventional teaching strategies to improve learning. This work presents an innovative approach to student performance prediction in educational settings. The strategy combines the DistilBERT with LSTM (DBTM) hybrid approach with the Spotted Hyena Optimizer (SHO) to change parameters. Regarding accuracy, log loss, and execution time, the model significantly improved over earlier models. The challenges presented by the increasing volume of data in graduate and postgraduate programs are effectively addressed by the proposed method. It produces exceptional performance metrics, including a 15-25% decrease in processing time through optimization, 98.7% accuracy, and 0.03% log loss. This work additionally demonstrates the effectiveness of DBTM-SHO in administering extensive datasets and makes an important improvement to educational data mining. It provides a robust foundation for organizations facing the challenges of evaluating student achievement in the era of vast data.

摘要

教育对于个人来说至关重要,通过提升自身价值,使人们过上充实的生活并取得卓越成就。它增强了自信心,使个人能够有效地应对现代社会的复杂性。尽管教育面临诸多挑战,但它仍在不断发展。许多教学方法的目标是提高学业成绩。特别是人工智能技术的发展,给学习带来了重大变革。这使得教学材料可以随时随地轻松获取。高等教育机构正在将技术融入传统教学策略中,以改善学习效果。本研究提出了一种在教育环境中预测学生表现的创新方法。该策略结合了 DistilBERT 和 LSTM(DBTM)混合方法与 Spotted Hyena Optimizer(SHO)来改变参数。在准确性、对数损失和执行时间方面,该模型明显优于早期模型。所提出的方法有效地解决了研究生和博士生课程中数据量不断增加带来的挑战。它产生了出色的性能指标,包括通过优化将处理时间缩短 15-25%,准确率达到 98.7%,对数损失为 0.03%。此外,本研究还展示了 DBTM-SHO 在处理大规模数据集方面的有效性,并为教育数据挖掘做出了重要改进。它为组织在大数据时代评估学生成绩的挑战提供了一个强大的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b035/11346664/4b8862781afe/pone.0309141.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验