Tianjin University of Technology and Education, Tianjin, China.
School of Marxism, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, China.
PLoS One. 2024 Sep 6;19(9):e0307221. doi: 10.1371/journal.pone.0307221. eCollection 2024.
In the domain of adaptable educational environments, our study is dedicated to achieving three key objectives: forecasting the adaptability of student learning, predicting and evaluating student performance, and employing aspect-based sentiment analysis for nuanced insights into student feedback. Using a systematic approach, we commence with an extensive data preparation phase to ensure data quality, followed by applying efficient data balancing techniques to mitigate biases. By emphasizing higher education or educational data mining, feature extraction methods are used to uncover significant patterns in the data. The basis of our classification method is the robust WideResNeXT architecture, which has been further improved for maximum efficiency by hyperparameter tweaking using the simple Modified Jaya Optimization Method. The recommended WResNeXt-MJ model has emerged as a formidable contender, demonstrating exceptional performance measurements. The model has an average accuracy of 98%, a low log loss of 0.05%, and an extraordinary precision score of 98.4% across all datasets, demonstrating its efficacy in enhancing predictive capacity and accuracy in flexible learning environments. This work presents a comprehensive helpful approach and a contemporary model suitable for flexible learning environments. WResNeXt-MJ's exceptional performance values underscore its capacity to enhance pupil achievement in global higher education significantly.
在自适应教育环境领域,我们的研究致力于实现三个关键目标:预测学生学习的适应性、预测和评估学生的表现,以及运用基于方面的情感分析来深入了解学生的反馈。我们采用系统的方法,从广泛的数据准备阶段开始,以确保数据质量,然后应用有效的数据平衡技术来减轻偏差。通过强调高等教育或教育数据挖掘,我们使用特征提取方法来揭示数据中的重要模式。我们的分类方法的基础是强大的 WideResNeXT 架构,通过使用简单的 Modified Jaya Optimization Method 进行超参数调整,进一步提高了其效率。推荐的 WResNeXt-MJ 模型已经成为一个强大的竞争者,表现出出色的性能测量结果。该模型在所有数据集上的平均准确率为 98%,对数损失低至 0.05%,精度得分高达 98.4%,这表明它在增强灵活学习环境中的预测能力和准确性方面非常有效。这项工作提出了一种全面的有帮助的方法和一个适合灵活学习环境的现代模型。WResNeXt-MJ 的出色性能值突显了其在全球高等教育中显著提高学生成绩的能力。