Laboratoire de Biomécanique Appliquée, UMRT24, Aix Marseille Université, Marseille, France.
iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France.
PLoS One. 2024 Aug 26;19(8):e0290927. doi: 10.1371/journal.pone.0290927. eCollection 2024.
Toward further cerebro-spinal flow quantification in clinical practice, this study aims at assessing the variations in the cerebro spinal fluid flow pattern associated with change in the morphology of the subarachnoid space of the cervical canal of healthy humans by developing a computational fluid dynamics model.
3D T2-space MRI sequence images of the cervical spine were used to segment 11 cervical subarachnoid space. Model validation (time-step, mesh size, size and number of boundary layers, influences of parted inflow and inflow continuous velocity) was performed a 40-year-old patient-specific model. Simulations were performed using computational fluid dynamics approach simulating transient flow (Sparlart-Almaras turbulence model) with a mesh size of 0.6, 6 boundary layers of 0.05 mm, a time step of 20 ms simulated on 15 cycles. Distributions of components velocity and WSS were respectively analyzed within the subarachnoid space (intervertebral et intravertebral levels) and on dura and pia maters.
Mean values cerebro spinal fluid velocity in specific local slices of the canal range between 0.07 and 0.17 m.s-1 and 0.1 and 0.3 m.s-1 for maximum values. Maximum wall shear stress values vary between 0.1 and 0.5 Pa with higher value at the middle of the cervical spine on pia mater and at the lower part of the cervical spine on dura mater. Intra and inter-individual variations of the wall shear stress were highlighted significant correlation gwith compression ratio (r = 0.76), occupation ratio and cross section area of the spinal cord.
The inter-individual variability in term of subarachnoid canal morphology and spinal cord position influence the cerebro-spinal flow pattern, highlighting the significance of canal morphology investigation before surgery.
为了在临床实践中进一步量化脑脊髓液流量,本研究旨在通过开发计算流体动力学模型,评估与健康人类颈椎蛛网膜下腔形态变化相关的脑脊液流动模式变化。
使用颈椎 3D T2 空间 MRI 序列图像对 11 个颈椎蛛网膜下腔进行分割。在 40 岁患者特定模型上进行模型验证(时间步长、网格尺寸、边界层大小和数量、分流入流和流入连续速度的影响)。使用计算流体动力学方法模拟瞬态流(Sparlart-Almaras 湍流模型)进行模拟,网格尺寸为 0.6,边界层 6 层,厚度为 0.05 毫米,时间步长为 20 毫秒,模拟 15 个周期。分别分析蛛网膜下腔(椎间及椎内水平)和硬脑膜和软脑膜上的速度和 WSS 分布。
椎管特定局部切片中的平均脑脊液速度值在 0.07 和 0.17 m.s-1 之间,最大值在 0.1 和 0.3 m.s-1 之间。最大壁面剪切应力值在 0.1 和 0.5 Pa 之间变化,在硬脑膜上颈椎中部和在硬脑膜下颈椎下部的数值较高。壁面剪切应力的个体内和个体间变化与压缩比(r = 0.76)、占用比和脊髓横截面积呈显著相关。
椎管形态和脊髓位置的个体间变异性会影响脑脊液流动模式,强调手术前进行椎管形态研究的重要性。