Suppr超能文献

共生反向散射增强型无线传感器网络的短包通信分析。

Analysis of symbiotic backscatter empowered wireless sensors network with short-packet communications.

机构信息

Wireless Communications Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.

出版信息

PLoS One. 2024 Aug 26;19(8):e0307366. doi: 10.1371/journal.pone.0307366. eCollection 2024.

Abstract

Recent progress studies in light of wireless communication systems mainly centred around two focuses: zero-energy consumption and ultra-reliable and low-latency communication (URLLC). Among various cutting-edge areas, exploiting ambient backscatter communication (Backcom) has recently been devised as one of the foremost solutions for achieving zero energy consumption through the viability of ambient radio frequency. Meanwhile, using short-packet communication (SPC) is the cheapest way to reach the goal of URLLCs. Upon these benefits, we investigate the feasibility of Backcom and SPC for symbiotic wireless sensor networks by analyzing the system performance. Specifically, we provide a highly approximated mathematical framework for evaluating the block-error rate (BLER) performance, followed by some useful asymptotic results. These results provide insights into the level of diversity and coding gain, as well as how packet design impacts BLER performance. Numerical results confirm the efficacy of the developed framework and the correctness of key insights gleaned from the asymptotic analyses.

摘要

近年来,无线通信系统的研究主要集中在两个焦点上:零能耗和超高可靠性与低延迟通信(URLLC)。在各种前沿领域中,利用环境反向散射通信(Backcom)最近被设计为通过利用环境射频实现零能耗的首要解决方案之一。同时,使用短包通信(SPC)是实现 URLLC 目标的最便宜方式。基于这些优势,我们通过分析系统性能来研究 Backcom 和 SPC 用于共生无线传感器网络的可行性。具体来说,我们提供了一个高度近似的数学框架来评估分组错误率(BLER)性能,随后给出了一些有用的渐近结果。这些结果深入了解了分集和编码增益的水平,以及分组设计如何影响 BLER 性能。数值结果证实了所开发框架的有效性,以及从渐近分析中得出的关键见解的正确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验