Suppr超能文献

机器学习评估维格列汀和利拉利汀在 2 型糖尿病中的疗效:血糖控制的预测因素。

Machine learning assessment of vildagliptin and linagliptin effectiveness in type 2 diabetes: Predictors of glycemic control.

机构信息

Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan.

Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan.

出版信息

PLoS One. 2024 Aug 26;19(8):e0309365. doi: 10.1371/journal.pone.0309365. eCollection 2024.

Abstract

OBJECTIVE

Differential effects of linagliptin and vildagliptin may help us personalize treatment for Type 2 Diabetes Mellitus (T2DM). The current study compares the effect of these drugs on glycated hemoglobin (HbA1c) in an artificial neural network (ANN) model.

METHODS

Patients with T2DM who received either vildagliptin or linagliptin, with predefined exclusion criteria, qualified for the study. Two input variable datasets were constructed: with or without imputation for missing values. The primary outcome was HbA1c readings between 3 to 12 months or the reduction in HbA1c levels.

RESULTS

The cohort comprised 191 individuals (92 vildagliptin and 99 linagliptin). Linagliptin group had significantly higher disease burden. For imputed dataset, HbA1c was lower with linagliptin at 3 to 12 months (7.442 ± 0.408 vs. 7.626 ± 0.408, P < 0.001). However, there was a small yet significant difference in HbA1c reduction favoring vildagliptin over linagliptin (-1.123 ± 0.033 vs. -1.111 ± 0.043, P < 0.001). LDL level, uric acid, and the drug group were identified as predictors for HbA1c levels. In the non-imputed dataset HbA1c at 3 to 12 months was lower with linagliptin (median ± IQR: 7.489 ± 0.467 vs. 7.634 ± 0.467, P-value < 0.001). However, both linagliptin and vildagliptin exhibited similar reductions in HbA1c levels (both median ± IQR of -1.07 ± 0.02). Predictors for HbA1c levels included eGFR level and the drug group.

CONCLUSION

Linagliptin effectively lowers HbA1c levels more than vildagliptin including in patients with comorbidities. DPP4-I choice is a constant predictor of HbA1c in all models.

摘要

目的

利拉利汀和维格列汀的差异作用可能有助于我们针对 2 型糖尿病(T2DM)进行个体化治疗。本研究比较了这两种药物在人工神经网络(ANN)模型中对糖化血红蛋白(HbA1c)的影响。

方法

符合纳入标准且排除了特定条件的 T2DM 患者,被纳入本研究,接受维格列汀或利拉利汀治疗。构建了两个输入变量数据集:有无缺失值填补。主要结局为 3 至 12 个月时的 HbA1c 读数或 HbA1c 水平降低情况。

结果

该队列包括 191 名个体(92 名接受维格列汀治疗,99 名接受利拉利汀治疗)。利拉利汀组的疾病负担明显更高。对于填补数据集,利拉利汀在 3 至 12 个月时 HbA1c 水平更低(7.442±0.408 与 7.626±0.408,P<0.001)。然而,利拉利汀组的 HbA1c 降低幅度略大但有统计学意义,优于维格列汀组(-1.123±0.033 与-1.111±0.043,P<0.001)。LDL 水平、尿酸和药物组被确定为 HbA1c 水平的预测因子。在未填补数据集,利拉利汀在 3 至 12 个月时的 HbA1c 水平更低(中位数±四分位距:7.489±0.467 与 7.634±0.467,P 值<0.001)。然而,利拉利汀和维格列汀均使 HbA1c 水平相似地降低(中位数±四分位距的降低幅度均为-1.07±0.02)。HbA1c 水平的预测因子包括 eGFR 水平和药物组。

结论

利拉利汀可有效降低 HbA1c 水平,其效果优于维格列汀,包括在合并症患者中。DPP4-I 的选择是所有模型中 HbA1c 的恒定预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8454/11346939/519d92a2519b/pone.0309365.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验