Suppr超能文献

通过计算机分析,扩展抗体药物偶联物 (ADC) 靶点的范围,提高肿瘤选择性和有效载荷的范围。

Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis.

机构信息

Lantern Pharma Inc., Dallas, TX, United States of America.

The University of Tennessee Health Science Center, Memphis, TN, United States of America.

出版信息

PLoS One. 2024 Aug 26;19(8):e0308604. doi: 10.1371/journal.pone.0308604. eCollection 2024.

Abstract

Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma's proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR®). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.

摘要

抗体药物偶联物 (ADC) 已成为一类有前途的靶向癌症治疗药物。为了充分发挥其潜力,还需要进一步进行改进,而目前的限制因素是缺乏经过验证的靶点和有效载荷。开发有效 ADC 的关键方面包括识别表面抗原,理想情况下,这些抗原能够区分靶肿瘤细胞和健康细胞,并且均匀表达,同时具有高潜力的有效载荷,能够进行选择性靶向。在这项研究中,我们整合了来自 Human Protein Atlas、Xenabrowser 和 Gene Expression Omnibus 的转录组学、蛋白质组学、免疫组织化学和细胞表面膜数据集,利用 Lantern Pharma 的专有 AI 平台 Response Algorithm for Drug positioning and Rescue (RADR®)。我们将其与基于证据的筛选相结合,以确定具有改善肿瘤选择性的 ADC 靶点。我们的分析确定了一组 82 个靶点和总共 290 个针对有效肿瘤靶向的靶点适应症组合。我们通过查询 TCGA 突变数据库中的 416 个基因来评估肿瘤突变对靶基因表达水平的影响,这些基因针对 22 种肿瘤亚型。此外,我们还组装了一个化合物目录,使用 NCI-Developmental Therapeutics Program 来识别潜在的有效载荷。我们的有效载荷挖掘策略根据 GI50 值将 729 种化合物分为三个亚类,范围从 pM 到 10 nM,同时结合了 9 种不同癌症适应症的敏感性模式。我们的研究结果确定了广泛的靶点和有效载荷,这可以为精确 ADC 靶向提供多种选择。我们提出了一种识别合适的靶标-适应症-有效载荷组合的初始方法,为开发未来的 ADC 候选药物提供了有价值的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ff/11346940/e47bc010cc9f/pone.0308604.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验