文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

含源自海洋的有效载荷的抗体药物偶联物。

Antibody-Drug Conjugates Containing Payloads from Marine Origin.

机构信息

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain.

出版信息

Mar Drugs. 2022 Jul 30;20(8):494. doi: 10.3390/md20080494.


DOI:10.3390/md20080494
PMID:36005497
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9410405/
Abstract

Antibody-drug conjugates (ADCs) are an important class of therapeutics for the treatment of cancer. Structurally, an ADC comprises an antibody, which serves as the delivery system, a payload drug that is a potent cytotoxin that kills cancer cells, and a chemical linker that connects the payload with the antibody. Unlike conventional chemotherapy methods, an ADC couples the selective targeting and pharmacokinetic characteristics related to the antibody with the potent cytotoxicity of the payload. This results in high specificity and potency by reducing off-target toxicities in patients by limiting the exposure of healthy tissues to the cytotoxic drug. As a consequence of these outstanding features, significant research efforts have been devoted to the design, synthesis, and development of ADCs, and several ADCs have been approved for clinical use. The ADC field not only relies upon biology and biochemistry (antibody) but also upon organic chemistry (linker and payload). In the latter, total synthesis of natural and designed cytotoxic compounds, together with the development of novel synthetic strategies, have been key aspects of the consecution of clinical ADCs. In the case of payloads from marine origin, impressive structural architectures and biological properties are observed, thus making them prime targets for chemical synthesis and the development of ADCs. In this review, we explore the molecular and biological diversity of ADCs, with particular emphasis on those containing marine cytotoxic drugs as the payload.

摘要

抗体药物偶联物(ADCs)是治疗癌症的一类重要治疗药物。从结构上看,ADC 由抗体组成,抗体作为输送系统,有效载荷药物是一种有效的细胞毒素,可以杀死癌细胞,而化学连接子将有效载荷与抗体连接起来。与传统的化疗方法不同,ADC 将抗体的选择性靶向和药代动力学特性与有效载荷的强大细胞毒性结合在一起。这通过将健康组织暴露于细胞毒性药物的程度限制在最低水平,从而提高了特异性和效力,降低了患者的脱靶毒性。由于这些突出的特点,人们投入了大量的研究努力来设计、合成和开发 ADC,并且已经有几种 ADC 被批准用于临床使用。ADC 领域不仅依赖于生物学和生物化学(抗体),还依赖于有机化学(连接子和有效载荷)。在后一种情况下,天然和设计的细胞毒性化合物的全合成,以及新的合成策略的发展,一直是临床 ADC 成功的关键方面。在海洋来源的有效载荷的情况下,观察到令人印象深刻的结构架构和生物学特性,因此它们是化学合成和 ADC 开发的主要目标。在这篇综述中,我们探讨了 ADC 的分子和生物学多样性,特别强调了那些含有海洋细胞毒性药物作为有效载荷的 ADC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/e7531c58f459/marinedrugs-20-00494-sch011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/88e1360c8af9/marinedrugs-20-00494-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/cf7d3fb095eb/marinedrugs-20-00494-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/0b61ff62d87a/marinedrugs-20-00494-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/3f417b5b2593/marinedrugs-20-00494-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/ddf9af9d519c/marinedrugs-20-00494-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/2ef8ff51a2e7/marinedrugs-20-00494-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/eb5f605fea75/marinedrugs-20-00494-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/10ded8a38be3/marinedrugs-20-00494-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/a6219e03a779/marinedrugs-20-00494-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/90224d2bfc46/marinedrugs-20-00494-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/7bdb166fda81/marinedrugs-20-00494-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/8246fa168814/marinedrugs-20-00494-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/781910ec10fe/marinedrugs-20-00494-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/9c8269a418d3/marinedrugs-20-00494-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/bff99a461d52/marinedrugs-20-00494-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/d92e9c06855e/marinedrugs-20-00494-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/606c426128d1/marinedrugs-20-00494-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/786646d86422/marinedrugs-20-00494-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/c3a9b7633541/marinedrugs-20-00494-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/1c255cb787b3/marinedrugs-20-00494-sch009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/0eca32447605/marinedrugs-20-00494-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/55674ae2b79d/marinedrugs-20-00494-sch010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/80a52fff69c2/marinedrugs-20-00494-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/44a81ddd5954/marinedrugs-20-00494-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/e7531c58f459/marinedrugs-20-00494-sch011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/88e1360c8af9/marinedrugs-20-00494-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/cf7d3fb095eb/marinedrugs-20-00494-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/0b61ff62d87a/marinedrugs-20-00494-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/3f417b5b2593/marinedrugs-20-00494-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/ddf9af9d519c/marinedrugs-20-00494-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/2ef8ff51a2e7/marinedrugs-20-00494-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/eb5f605fea75/marinedrugs-20-00494-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/10ded8a38be3/marinedrugs-20-00494-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/a6219e03a779/marinedrugs-20-00494-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/90224d2bfc46/marinedrugs-20-00494-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/7bdb166fda81/marinedrugs-20-00494-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/8246fa168814/marinedrugs-20-00494-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/781910ec10fe/marinedrugs-20-00494-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/9c8269a418d3/marinedrugs-20-00494-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/bff99a461d52/marinedrugs-20-00494-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/d92e9c06855e/marinedrugs-20-00494-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/606c426128d1/marinedrugs-20-00494-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/786646d86422/marinedrugs-20-00494-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/c3a9b7633541/marinedrugs-20-00494-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/1c255cb787b3/marinedrugs-20-00494-sch009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/0eca32447605/marinedrugs-20-00494-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/55674ae2b79d/marinedrugs-20-00494-sch010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/80a52fff69c2/marinedrugs-20-00494-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/44a81ddd5954/marinedrugs-20-00494-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1469/9410405/e7531c58f459/marinedrugs-20-00494-sch011.jpg

相似文献

[1]
Antibody-Drug Conjugates Containing Payloads from Marine Origin.

Mar Drugs. 2022-7-30

[2]
Antibody drug conjugates beyond cytotoxic payloads.

Prog Med Chem. 2023

[3]
Comprehensive review on the elaboration of payloads derived from natural products for antibody-drug conjugates.

Eur J Med Chem. 2024-3-15

[4]
Natural products as exquisitely potent cytotoxic payloads for antibody- drug conjugates.

Curr Top Med Chem. 2015

[5]
Total Synthesis in Search of Potent Antibody-Drug Conjugate Payloads. From the Fundamentals to the Translational.

Acc Chem Res. 2018-12-21

[6]
Antibody-Drug Conjugates-A Tutorial Review.

Molecules. 2021-5-15

[7]
Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads.

Eur J Med Chem. 2024-10-5

[8]
Marine Antibody-Drug Conjugates: Design Strategies and Research Progress.

Mar Drugs. 2017-1-13

[9]
Antibody-Drug Conjugates with Pyrrole-Based KSP Inhibitors as the Payload Class.

Angew Chem Int Ed Engl. 2018-10-15

[10]
[Design of next generation antibody drug conjugates].

Yao Xue Xue Bao. 2013-7

引用本文的文献

[1]
Cyanobacterial Peptides in Anticancer Therapy: A Comprehensive Review of Mechanisms, Clinical Advances, and Biotechnological Innovation.

Mar Drugs. 2025-5-29

[2]
Reinventing chemotherapy.

Oncologist. 2025-2-6

[3]
Marine peptides in lymphoma: surgery at molecular level for therapeutic understanding.

Naunyn Schmiedebergs Arch Pharmacol. 2025-2-24

[4]
Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature-Inspired Payloads.

Int J Mol Sci. 2024-8-8

[5]
Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis.

PLoS One. 2024

[6]
Antibody-Drug Conjugates-Evolution and Perspectives.

Int J Mol Sci. 2024-6-26

[7]
Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality?

Int J Mol Sci. 2024-6-1

[8]
Tag-free protein modification by lipoate ligase A: exploring substrate tolerance.

Anal Sci. 2024-6

[9]
ADCdb: the database of antibody-drug conjugates.

Nucleic Acids Res. 2024-1-5

[10]
Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins.

Molecules. 2023-1-17

本文引用的文献

[1]
Tisotumab vedotin for the treatment of cervical carcinoma.

Drugs Today (Barc). 2022-5

[2]
Disitamab vedotin: a novel antibody-drug conjugates for cancer therapy.

Drug Deliv. 2022-12

[3]
Monitoring In Vivo Performances of Protein-Drug Conjugates Using Site-Selective Dual Radiolabeling and Ex Vivo Digital Imaging.

J Med Chem. 2022-5-12

[4]
Synthesis and Evaluation of a Non-Peptide Small-Molecule Drug Conjugate Targeting Integrin αβ.

Front Chem. 2022-4-11

[5]
An Innovative Site-Specific Anti-HER2 Antibody-Drug Conjugate with High Homogeneity and Improved Therapeutic Index.

Onco Targets Ther. 2022-4-8

[6]
A Patent Review on FDA-Approved Antibody-Drug Conjugates, Their Linkers and Drug Payloads.

ChemMedChem. 2022-6-3

[7]
Antibody drug conjugate: the "biological missile" for targeted cancer therapy.

Signal Transduct Target Ther. 2022-3-22

[8]
Targeted Chemoradiotherapy of Prostate Cancer Using Gold Nanoclusters with Protease Activatable Monomethyl Auristatin E.

ACS Appl Mater Interfaces. 2022-4-6

[9]
Pathophysiologic and Pharmacologic Considerations to Improve the Design and Application of Antibody-Drug Conjugates.

Cancer Res. 2022-5-16

[10]
Ladiratuzumab vedotin for metastatic triple negative cancer: preliminary results, key challenges, and clinical potential.

Expert Opin Investig Drugs. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索