Ahmad Waqas, Xu Yi, Wu Xiaoxiao, Adade Selorm Yao-Say Solomon, Chen Quansheng
College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
Talanta. 2024 Dec 1;280:126730. doi: 10.1016/j.talanta.2024.126730. Epub 2024 Aug 17.
The expansive potential of surface-enhanced Raman scattering (SERS) has been well-established; however, the primary bottleneck hindering its routine analytical and commercial implementation is the poor signal reproducibility and challenges in substrate fabrication. Thus, the current work attempts to synthesize a scalable and reproducible nanoporous gold (npAu) decorated with gold (Au) nanoparticles to generate a highly structured Au@npAu nanocomposite. The substrate fabrication completes via three distinct routes: i) selective dealloying to form npAu on the Au film, ii) the fast deposition (i-t = -0.8 V, t = 10.0 s) of Au atoms across the npAu surface, and finally iii) the precise growth control of the generated Au@npAu by a series of by oxidation-reduction cycles (-0.03 to -0.4 V for 80.0 segments at ν = 50.0 mVs). The simulations of the dealloyed npAu and the final Au@npAu nanocomposite showed that the reduced interparticle spacing and ligament size in the Au@npAu nanocomposite is crucial for forming abundant "hot spot" regions with highly concentrated electromagnetic fields. The Au@npAu substrate reproducibility was assessed on 400.0 sites for SERS spectral acquisition with a relative standard deviation of 9.22 %. Furthermore, the Au@npAu was checked under different preparation batches for intra- and inter-day analysis and storage for 20.0 days with good stability. Finally, the substrate was checked for direct SERS detection of ferbam residues with a 4.34 × 10 mol L sensitivity and examined in real samples with satisfactory recoveries (97.63 ± 1.95%-99.16 ± 0.24 %). This work offers a promising avenue towards highly reproducible, scalable and universal Au@npAu SERS substrate fabrication in diverse SERS-related applications.
表面增强拉曼散射(SERS)的广阔应用潜力已得到充分证实;然而,阻碍其常规分析和商业应用的主要瓶颈是信号重现性差以及基底制备方面的挑战。因此,当前工作尝试合成一种可扩展且可重现的、装饰有金(Au)纳米颗粒的纳米多孔金(npAu),以生成高度结构化的Au@npAu纳米复合材料。基底制备通过三条不同途径完成:i)选择性脱合金在Au膜上形成npAu,ii)在npAu表面快速沉积(i - t = -0.8 V,t = 10.0 s)Au原子,最后iii)通过一系列氧化还原循环(-0.03至 -0.4 V,80.0个段,ν = 50.0 mVs)对生成的Au@npAu进行精确生长控制。对脱合金后的npAu和最终的Au@npAu纳米复合材料的模拟表明,Au@npAu纳米复合材料中颗粒间间距和韧带尺寸的减小对于形成具有高度集中电磁场的丰富“热点”区域至关重要。在400.0个位点评估了Au@npAu基底的重现性以进行SERS光谱采集,相对标准偏差为9.22%。此外,在不同制备批次下对Au@npAu进行了日内和日间分析以及20.0天储存稳定性检查,结果良好。最后,检查了该基底用于直接SERS检测福美铁残留的灵敏度为4.34×10 mol L,并且在实际样品中进行了检测,回收率令人满意(97.63±1.95% - 99.16±0.24%)。这项工作为在各种与SERS相关的应用中制备高度可重现、可扩展且通用的Au@npAu SERS基底提供了一条有前景的途径。